A095074 Primes in whose binary expansion the number of 0-bits is less than or equal to number of 1-bits.
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 311, 313, 317, 331, 347, 349, 359
Offset: 1
Examples
From _Indranil Ghosh_, Feb 03 2017: (Start) 29 is in the sequence because 29_10 = 11101_2. '11101' has one 0 and three 1's. 37 is in the sequence because 37_10 = 100101_2. '100101' has three 1's and 3 0's. (End)
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..25000
- A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[50]], DigitCount[#, 2, 0] <= DigitCount[#, 2, 1] &] (* Alonso del Arte, Jan 11 2011 *)
-
PARI
forprime(p=2,359,v=binary(p);s=0;for(k=1,#v,s+=if(v[k]==0,+1,-1));if(s<=0,print1(p,", "))) \\ Washington Bomfim, Jan 13 2011
-
Python
from sympy import isprime i=1 j=1 while j<=25000: if isprime(i) and bin(i)[2:].count("0")<=bin(i)[2:].count("1"): print(str(j)+" "+str(i)) j+=1 i+=1 # Indranil Ghosh, Feb 03 2017