A095076 Parity of 1-fibits in Zeckendorf expansion A014417(n).
0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0
Offset: 0
Keywords
References
- Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, Examples 7.8.2 and 7.8.4.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Joerg Arndt, Matters Computational (The Fxtbook), section 38.11.1, pp. 754-756
- Emmanuel Ferrand, An analogue of the Thue-Morse sequence, The Electronic Journal of Combinatorics, Volume 14 (2007), R30.
- Pierre Popoli and Manon Stipulanti, On the pseudorandomness of Parry-Bertrand automatic sequences, arXiv:2408.14059 [math.CO], 2024. See p. 6.
- Leonard Rozendaal, Pisano word, tesselation, plane-filling fractal, Preprint, hal-01552281, 2017.
- Jeffrey Shallit, Subword complexity of the Fibonacci-Thue-Morse sequence: The proof of Dekking's conjecture, Indagationes Mathematicae, Vol. 32, No. 3 (2021), pp. 729-735; arXiv preprint, arXiv:2010.10956 [cs.DM], 2020.
- Jeffrey Shallit, Note on a Fibonacci Parity Sequence, arXiv:2203.10504 [cs.FL], 2022.
- Index entries for characteristic functions.
Crossrefs
Programs
-
Maple
A095076 := proc(n) modp(A007895(n),2) ; end proc: seq(A095076(n),n=0..40) ; # R. J. Mathar, Sep 22 2020
-
Mathematica
r=(1+5^(1/2))/2; u[n_] := Floor[n*r]; (* A000201 *) a[1] = 0; h = 128; c = (u[#1] &) /@ Range[2h]; d = (Complement[Range[Max[#1]], #1] &)[c]; (* A001950 *) Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; Table[a[c[[n]]] = a[n], {n, 1, h}] (* A095076 conjectured *) Flatten[Position[%, 0]] (* A189034 *) Flatten[Position[%%, 1]] (* A189035 *) Mod[DigitCount[Select[Range[0, 540], BitAnd[#, 2 #] == 0 &], 2, 1], 2] (* Amiram Eldar, Feb 05 2023 *)
-
Python
def ok(n): return True if n==0 else n*(2*n & n == 0) print([bin(n)[2:].count("1")%2 for n in range(1001) if ok(n)]) # Indranil Ghosh, Jun 08 2017
Formula
a(n) = 1 - A095111(n).
a(n) = A007895(n) mod 2. - Michel Dekking, Mar 10 2020
Comments