A095122 a(n) = Fibonacci(n)*(2*Fibonacci(n)-1).
0, 1, 1, 6, 15, 45, 120, 325, 861, 2278, 5995, 15753, 41328, 108345, 283881, 743590, 1947351, 5099221, 13351528, 34957341, 91523685, 239618886, 627341331, 1642418641, 4299936480, 11257426225, 29472399505, 77159865030, 202007345631, 528862414653, 1384580291160
Offset: 0
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,1,-5,-1,1).
Programs
-
Mathematica
#(2#-1)&/@Fibonacci[Range[0,30]] (* or *) LinearRecurrence[{3,1,-5,-1,1},{0,1,1,6,15},30] (* Harvey P. Dale, Jan 14 2012 *)
Formula
G.f.: x*(1-2*x+2*x^2+x^3)/((1+x)*(1-x-x^2)*(1-3*x+x^2)).
a(n) = 2*(Fibonacci(2n-1)+Fibonacci(2n+1))/5-Fibonacci(n)+4*(-1)^n/5.
a(n) = 2*Lucas(2n)/5-Fibonacci(n)+4*(-1)^n/5.
a(n) = 3*a(n-1)+a(n-2)-5*a(n-3)-a(n-4)+a(n-5), with a(0)=0, a(1)=1, a(2)=1, a(3)=6, a(4)=15. - Harvey P. Dale, Jan 14 2012
Comments