cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095127 a(n+3) = 2*a(n+2) + 3*a(n+1) - a(n); with a(1) = 1, a(2) = 4, a(3) = 10.

Original entry on oeis.org

1, 4, 10, 31, 88, 259, 751, 2191, 6376, 18574, 54085, 157516, 458713, 1335889, 3890401, 11329756, 32994826, 96088519, 279831760, 814934251, 2373275263, 6911521519, 20127934576, 58617158446, 170706599101, 497136738964
Offset: 1

Views

Author

Gary W. Adamson, May 29 2004

Keywords

Comments

A sequence generated from the characteristic polynomial of A095125 and A095126.
a(n)/a(n-1) tends to a 2.9122291784..., a root of the polynomial x^3 - 2x^2 - 3x + 1; e.g. a(16)/a(15) = 11329756/3890401 = 2.912233...

Examples

			a(7) = 751 = 2*a(6) + 3*a(5) - a(4) = 2*259 + 3*88 - 31.
a(4) = 31 = center term in M^4 * [1 1 1] = [10 31 88].
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 4; a[3] = 10; a[n_] := a[n] = 2a[n - 1] + 3a[n - 2] - a[n - 3]; Table[ a[n], {n, 25}] (* Robert G. Wilson v, Jun 01 2004 *)
    nxt[{a_,b_,c_}]:={b,c,2c+3b-a}; NestList[nxt,{1,4,10},30][[All,1]] (* or *) LinearRecurrence[{2,3,-1},{1,4,10},30] (* Harvey P. Dale, Feb 08 2022 *)
  • PARI
    Vec(x*(1 + 2*x - x^2) / (1 - 2*x - 3*x^2 + x^3) + O(x^30)) \\ Colin Barker, Aug 31 2019

Formula

M = a matrix having the same eigenvalues as the roots of the characteristic polynomial of A095125 and A095126: (x^3 - 2x^2 - 3x + 1). Then M^n * [1 1 1] = [p q r] where q = a(n) and p, r, are offset members of the same sequence.
G.f.: x*(1 + 2*x - x^2) / (1 - 2*x - 3*x^2 + x^3). - Colin Barker, Aug 31 2019

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 01 2004