A095141 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 6.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 0, 4, 1, 1, 5, 4, 4, 5, 1, 1, 0, 3, 2, 3, 0, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 2, 4, 2, 4, 2, 4, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 3, 1, 1, 4, 3, 0, 0, 0, 0, 0, 3, 4, 1, 1, 5, 1, 3, 0, 0, 0, 0, 3, 1, 5, 1, 1, 0, 0, 4, 3, 0, 0, 0, 3, 4, 0, 0, 1, 1, 1, 0, 4, 1, 3, 0, 0, 3, 1, 4, 0, 1, 1
Offset: 0
Links
- Bill Gosper, Pastel-colored illustration of triangle
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- Ivan Korec, Definability of Pascal's Triangles Modulo 4 and 6 and Some Other Binary Operations from Their Associated Equivalence Relations, Acta Univ. M. Belii Ser. Math. 4 (1996), pp. 53-66.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Cf. A007318, A047999, A083093, A034931, A095140, A095142, A034930, A095143, A008975, A095144, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), (this sequence) (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Mathematica
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 6] Graphics[Table[{%[Mod[Binomial[n, k], 6]/5], RegularPolygon[{4√3 (k - n/2), -6 n}, {4,π/6}, 6]}, {n, 0, 105}, {k, 0, n}]] (* Mma code for illustration, Bill Gosper, Aug 05 2017 *)
-
Python
from math import isqrt, comb from sympy.ntheory.modular import crt def A095141(n): w, c = n-((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))*(r+1)>>1), 1 d = int(not ~r & w) while True: r, a = divmod(r,3) w, b = divmod(w,3) c = c*comb(a,b)%3 if r<3 and w<3: c = c*comb(r,w)%3 break return crt([3,2],[c,d])[0] # Chai Wah Wu, May 01 2025
Formula
T(i, j) = binomial(i, j) mod 6.