A095143 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 9.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 1, 1, 5, 1, 1, 6, 6, 2, 6, 6, 1, 1, 7, 3, 8, 8, 3, 7, 1, 1, 8, 1, 2, 7, 2, 1, 8, 1, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 1, 1, 0, 3, 3, 0, 3, 3, 0, 1, 1, 1, 2, 1, 3, 6, 3, 3, 6, 3, 1, 2, 1, 1, 3, 3, 4, 0, 0, 6, 0, 0, 4, 3, 3, 1, 1, 4, 6, 7, 4, 0, 6, 6, 0, 4, 7, 6, 4, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 6, 4, 1; 1, 5, 1, 1, 5, 1; 1, 6, 6, 2, 6, 6, 1; ...
Links
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- James G. Huard, Blair K. Spearman and Kenneth S. Williams, Pascal's triangle (mod 9), Acta Arithmetica (1997), Volume: 78, Issue: 4, page 331-349.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A008975, A095144, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), (this sequence) (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Mathematica
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 9]
-
Python
from math import isqrt, comb from gmpy2 import digits def A095143(n): g = (m:=isqrt(f:=n+1<<1))-(f<=m*(m+1)) k = n-comb(g+1,2) if sum(int(d) for d in digits(k,3))+sum(int(d) for d in digits(g-k,3))-sum(int(d) for d in digits(g,3))>2: return 0 s, c, d = digits(g,3), 1, 0 w = (digits(k,3)).zfill(l:=len(s)) if l == 1: return comb(g,k)%9 for i in range(0,l-1): r, t = s[i:i+2], w[i:i+2] if (x:=int(r,3)) < (y:=int(t,3)): d += (t[0]>r[0])+(t[1]>r[1]) if r[1]>=t[1]: c = c*comb(int(r[1],3),int(t[1],3))%9 else: c = c*comb(x,y)%9 for i in range(1,l-1): if w[i]>s[i] or (z:=comb(int(s[i],3),int(w[i],3))) == 3: d -= 1 else: c = c*pow(z,-1,9)%9 return c*3**d%9 # Chai Wah Wu, Jul 19 2025
Formula
T(i, j) = binomial(i, j) mod 9.