A095144 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 11.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 4, 9, 4, 6, 1, 1, 7, 10, 2, 2, 10, 7, 1, 1, 8, 6, 1, 4, 1, 6, 8, 1, 1, 9, 3, 7, 5, 5, 7, 3, 9, 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1
Offset: 0
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Zubeyir Cinkir and Aysegul Ozturkalan, An extension of Lucas Theorem, arXiv:2309.00109 [math.NT], 2023. See Figures 3 and 4 p. 6.
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A095143, A008975, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), (this sequence) (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Maple
R[0]:= 1: for n from 1 to 20 do R[n]:= op([R[n-1],0] + [0,R[n-1]] mod 11); od: for n from 0 to 20 do R[n] od; # Robert Israel, Jan 02 2019
-
Mathematica
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 11]
-
Python
from math import isqrt, comb def A095144(n): def f(m,k): if m<11 and k<11: return comb(m,k)%11 c,a = divmod(m,11) d,b = divmod(k,11) return f(c,d)*f(a,b)%11 return f(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Apr 30 2025
Formula
T(i, j) = binomial(i, j) mod 11.
From Robert Israel, Jan 02 2019: (Start)
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 11 with T(n,0) = 1.
T(n,k) = (Product_i binomial(n_i, k_i)) mod 11, where n_i and k_i are the base-11 digits of n and k. (End)
Comments