A095177 E.g.f.: exp(x)/(1-x)^5.
1, 6, 41, 316, 2721, 25946, 271801, 3105936, 38474561, 513796366, 7360674441, 112632827396, 1833790646881, 31656637715106, 577636838177561, 11109543835539736, 224635867973671041, 4764236394052127126
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Poisson-Charlier polynomial
Programs
-
Mathematica
CoefficientList[Series[Exp[x]/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 21 2013 *) Table[HypergeometricPFQ[{5, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
-
PARI
a(n) = sum(k=0,n, binomial(n, k)*(k+4)!/4! ); \\ Joerg Arndt, Apr 22 2013
Formula
a(n) = Sum_{k = 0..n} A094816(n, k)*5^k.
a(n) = Sum_{k=0..n} binomial(n, k)*(k+4)!/4!.
G.f.: 1/Q(0), where Q(k) = 1 - x - x*(k+5)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) ~ n! *exp(1)*n^4/24. - Vaclav Kotesovec, Jun 21 2013
a(n) = 2F0(5,-n;;-1). - Benedict W. J. Irwin, May 27 2016
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^4 + 6*n^3 + 17*n^2 + 20*n + 9 = A094793(n). - Peter Bala, Jul 26 2021
Comments