A095209 a(0) = 1, and for n > 0, a(n) = the least multiple of prime(n) such that the geometric mean of a(0) to a(n) is an integer.
1, 4, 54, 3750, 504210, 372027810, 144949074270, 209481995953230, 164735296593157290, 401824316553919068810, 2721846739094340967339230, 5095936579799734140259818030, 48850362989361131638352534231610
Offset: 0
Keywords
Examples
(1*4*54*3750)^(1/4) = 30.
Links
- Christian Krause, Jamie Morken, et al., A mined LODA assembly source for this sequence
- Don Reble, Python program
Programs
-
Mathematica
{1}~Join~MapIndexed[Prime[First[#2]]^First[#2]*#1 &, FoldList[Times, Prime@ Range[12]]] (* Michael De Vlieger, Jul 01 2022 *)
-
PARI
A002110(n)=prod(i=1, n, prime(i)); A095209(n) = if(0==n, 1, prime(n)^(n)*A002110(n)); \\ Antti Karttunen, Jun 28 2022
Formula
From Antti Karttunen and Peter Munn, May 04 2022: (Start)
The n-th partial product of these terms = A002110(n)^(1+n), i.e., the n-th geometric mean is the n-th power of (n-1)-th primorial.
(End)
Extensions
Edited by Don Reble, Jan 06 2007
Starting offset changed from 1 to 0 and the definition accordingly edited by Antti Karttunen, May 04 2022