A095238 a(1) = 1, a(n) = n*(sum of all previous terms mod n).
1, 2, 0, 12, 0, 18, 35, 32, 9, 90, 11, 72, 117, 98, 30, 240, 34, 162, 247, 200, 63, 462, 69, 288, 425, 338, 108, 756, 116, 450, 651, 512, 165, 1122, 175, 648, 925, 722, 234, 1560, 246, 882, 1247, 968, 315, 2070, 329, 1152, 1617, 1250, 408, 2652, 424, 1458, 2035
Offset: 1
Keywords
Examples
a(6) = 6*((1 + 2 + 0 + 12 + 0) mod 6) = 18.
Crossrefs
Cf. A074143.
Programs
-
Maple
A095238:=proc(n) option remember; n*(add(A095238(i),i=1..n-1) mod n) end: A095238(1):=1: seq(A095238(n),n=1..100);
-
Mathematica
a[1] = 1; a[n_] := a[n] = n*Mod[Sum[a[i], {i, n - 1}], n]; Table[ a[n], {n, 55}] (* Robert G. Wilson v, Jun 16 2004 *)
-
PARI
a=vector(1000);a[1]=1;for(i=2,1000,a[i]=i*lift(Mod(sum(j=1,i-1,a[j]),i)))
Formula
Appears to satisfy a linear recurrence with characteristic polynomial (1+x)(1+x^3)^2(1-x^3)^3 (checked up to n = 10^4). - Ralf Stephan, Dec 04 2004
Extensions
More terms from Alec Mihailovs (alec(AT)mihailovs.com), Robert G. Wilson v and Johan Claes, Jun 16 2004
Comments