A095264 a(n) = 2^(n+2) - 3*n - 4.
1, 6, 19, 48, 109, 234, 487, 996, 2017, 4062, 8155, 16344, 32725, 65490, 131023, 262092, 524233, 1048518, 2097091, 4194240, 8388541, 16777146, 33554359, 67108788, 134217649, 268435374, 536870827, 1073741736, 2147483557, 4294967202, 8589934495, 17179869084, 34359738265
Offset: 1
Examples
a(5) = 109 = 2^7 - 3*5 - 4. a(5) = 109 since M^5 * [1 0 0] = [1 5 109]. a(7) = 487 = 4*234 - 5*109 + 2*48.
Links
- P. Dehornoy, Combinatorics of normal sequences of braids, arXiv:math/0511114 [math.CO], 2005.
- Shishuo Fu, Zhicong Lin, and Yaling Wang, Refined Wilf-equivalences by Comtet statistics, arXiv:2009.04269 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Mathematica
a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {1, 3, 2}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *) Table[2^(n+2)-3n-4,{n,40}] (* or *) LinearRecurrence[{4,-5,2},{1,6,19},40] (* Harvey P. Dale, Sep 24 2021 *)
Formula
Let M = [1 0 0 / 1 1 0 / 1 3 2], then M^n * [1 0 0] = [1 n a(n)]. The characteristic polynomial of M is x^3 - 4*x^2 + 5*x - 2.
a(n+3) = 4*a(n+2) - 5*a(n+1) + 2*a(n).
Row sums of A125232; 5th diagonal from the right of A126277; binomial transform of [1, 5, 8, 8, 8, ...]. - Gary W. Adamson, Dec 23 2006
a(n) = 2*a(n-1) + (3n-2). - Gary W. Adamson, Sep 30 2007
G.f.: -x*(1+2*x)/((2*x-1)*(x-1)^2). - R. J. Mathar, Nov 18 2007
E.g.f.: exp(x)*(4*exp(x) - 3*x - 4). - Elmo R. Oliveira, Apr 01 2025
Extensions
Edited, corrected and extended by Robert G. Wilson v, Jun 05 2004
More terms from Elmo R. Oliveira, Apr 01 2025
Comments