cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095264 a(n) = 2^(n+2) - 3*n - 4.

Original entry on oeis.org

1, 6, 19, 48, 109, 234, 487, 996, 2017, 4062, 8155, 16344, 32725, 65490, 131023, 262092, 524233, 1048518, 2097091, 4194240, 8388541, 16777146, 33554359, 67108788, 134217649, 268435374, 536870827, 1073741736, 2147483557, 4294967202, 8589934495, 17179869084, 34359738265
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

A sequence derived from a 3rd-order matrix generator.
The number of positive 3-strand braids of degree at most n. - R. J. Mathar, May 04 2006
Define a triangle T by T(n,n) = n*(n+1)/2, T(n,1) = n*(n-1) + 1, and T(r,c) = T(r-1,c-1) + T(r-1,c). Its rows are 1; 3,3; 7,6,6; 13,13,12,10; 21,26,25,22,15; etc. The sum of the terms in the n-th row is a(n). - J. M. Bergot, May 03 2013

Examples

			a(5) = 109 = 2^7 - 3*5 - 4.
a(5) = 109 since M^5 * [1 0 0] = [1 5 109].
a(7) = 487 = 4*234 - 5*109 + 2*48.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {1, 3, 2}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *)
    Table[2^(n+2)-3n-4,{n,40}] (* or *) LinearRecurrence[{4,-5,2},{1,6,19},40] (* Harvey P. Dale, Sep 24 2021 *)

Formula

Let M = [1 0 0 / 1 1 0 / 1 3 2], then M^n * [1 0 0] = [1 n a(n)]. The characteristic polynomial of M is x^3 - 4*x^2 + 5*x - 2.
a(n+3) = 4*a(n+2) - 5*a(n+1) + 2*a(n).
a(n) = Sum_{i=2..n+1} A036563(i) [A036563 is 2^i-3]. - Gerald McGarvey, Jun 28 2004
Row sums of A125232; 5th diagonal from the right of A126277; binomial transform of [1, 5, 8, 8, 8, ...]. - Gary W. Adamson, Dec 23 2006
a(n) = 2*a(n-1) + (3n-2). - Gary W. Adamson, Sep 30 2007
G.f.: -x*(1+2*x)/((2*x-1)*(x-1)^2). - R. J. Mathar, Nov 18 2007
E.g.f.: exp(x)*(4*exp(x) - 3*x - 4). - Elmo R. Oliveira, Apr 01 2025

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 05 2004
More terms from Elmo R. Oliveira, Apr 01 2025