A095276 Length of n-th run of identical symbols in A095076 and A095111.
1, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 3, 3, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 2, 1, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 3, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 3, 3, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 3, 3, 1, 1, 2, 1, 3, 2, 3, 1, 1, 3, 3, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Michel Dekking, Proof of conjecture on frequencies
Programs
-
Mathematica
Length /@ Split[Mod[DigitCount[Select[Range[0, 1500], BitAnd[#, 2 #] == 0 &], 2, 1], 2]] (* Amiram Eldar, Feb 07 2023 *)
Formula
(a(n)) is a morphic sequence. Let y = GDAEABFA... be the unique fixed point of the morphism rho given by rho(A) = B, rho(B) =C, rho(C) = F, rho(D) = EA, rho(E) = FA, rho(F) = GA, rho(G) = GDA on the alphabet {A,B,C,D,E,F,G}. Then (a(n+1)) is the image of y under the morphism A->11, B->21, C->32, D->23, E->33, F->3113, G->311213. - Michel Dekking, Jun 25 2024
Comments