A095310 a(n+3) = 2*a(n+2) + 3*(n+1) - a(n).
1, 5, 12, 38, 107, 316, 915, 2671, 7771, 22640, 65922, 191993, 559112, 1628281, 4741905, 13809541, 40216516, 117119750, 341079507, 993301748, 2892722267, 8424270271, 24533405595, 71446899736, 208069745986, 605946785585
Offset: 1
Examples
a(6) = 316 = 2*107 + 3*38 - 12. a(5) = 107 since M^5 * [1 0 0] = [107 q 38].
Links
- Index entries for linear recurrences with constant coefficients, signature (2, 3, -1).
Programs
-
Mathematica
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 27}] (* Robert G. Wilson v, Jun 05 2004 *) LinearRecurrence[{2,3,-1},{1,5,12},30] (* Harvey P. Dale, Jan 25 2014 *)
Formula
G.f.: (-x^2+3*x+1)/(x^3-3*x^2-2*x+1). - Harvey P. Dale, Jan 25 2014
Extensions
Corrected and extended by Robert G. Wilson v, Jun 05 2004
Edited by N. J. A. Sloane, Jun 07 2004
Comments