cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095372 1+integers repeating "90" decimal digit pattern.

Original entry on oeis.org

1, 91, 9091, 909091, 90909091, 9090909091, 909090909091, 90909090909091, 9090909090909091, 909090909090909091, 90909090909090909091, 9090909090909090909091, 909090909090909090909091
Offset: 0

Views

Author

Labos Elemer, Jun 07 2004

Keywords

Comments

These numbers arise for example as divisors of several repunits (A002275).
The aerated sequence A(n) = [1, 0, 91, 0, 9091, 0, 909091,...] is a divisibility sequence, i.e., A(n) divides A(m) whenever n divides m. It is the case P1 = 0, P2 = -11^2, Q = 10 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Aug 22 2019
Except for a(0) = 1, these terms M are such that 21 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1. Actually 21 is A329914(1) and a(1) = A329915(1) = 91, and the terms >=91 form the set {M_21}; for example, 21 * 909091 = 1(909091)1. - Bernard Schott, Dec 01 2019

Examples

			Digit-pattern P=[ab..z] repeating integers equal formally with P*(-1+10^(Ln))/(-1+10^L), where L is the length of pattern;
a(9) divides A002275(38) repunit. See A095371.
		

Crossrefs

Programs

  • Mathematica
    Table[1+90*(100^n-1)/99, {n, 0, 20}]

Formula

a(n) = 1 + 90*(-1 + 100^n)/99 = (10^(2*n+1) + 1)/11. - Rick L. Shepherd, Aug 01 2004
From Colin Barker, Jul 03 2013: (Start)
a(n) = 101*a(n-1) - 100*a(n-2).
G.f.: -(10*x-1)/((x-1)*(100*x-1)). (End)
E.g.f.: exp(x)*(1 + 10*(exp(99*x) - 1)/11). - Elmo R. Oliveira, Mar 15 2025