A095372 1+integers repeating "90" decimal digit pattern.
1, 91, 9091, 909091, 90909091, 9090909091, 909090909091, 90909090909091, 9090909090909091, 909090909090909091, 90909090909090909091, 9090909090909090909091, 909090909090909090909091
Offset: 0
Examples
Digit-pattern P=[ab..z] repeating integers equal formally with P*(-1+10^(Ln))/(-1+10^L), where L is the length of pattern; a(9) divides A002275(38) repunit. See A095371.
Links
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for linear recurrences with constant coefficients, signature (101,-100).
Crossrefs
Programs
-
Mathematica
Table[1+90*(100^n-1)/99, {n, 0, 20}]
Formula
a(n) = 1 + 90*(-1 + 100^n)/99 = (10^(2*n+1) + 1)/11. - Rick L. Shepherd, Aug 01 2004
From Colin Barker, Jul 03 2013: (Start)
a(n) = 101*a(n-1) - 100*a(n-2).
G.f.: -(10*x-1)/((x-1)*(100*x-1)). (End)
E.g.f.: exp(x)*(1 + 10*(exp(99*x) - 1)/11). - Elmo R. Oliveira, Mar 15 2025
Comments