A095408 Total number of decimal digits in all distinct prime factors of n minus number of digits in n.
-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1, -1, 0, 0, 1, 0, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, -1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1
Offset: 1
Examples
n=22: prime divisors are {2,11}, a(22) = 3-2 = 1. n=63: prime divisors are {3,7}, a(63) = 2-2 = 0. n=100: prime divisors are {2,5}, a(100) = 2-3 = -1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12345
Programs
-
Mathematica
ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] pl[x_] :=Length[tdp[x]] nl[x_] :=Length[IntegerDigits[x]] t1=Table[nl[w], {w, 1, 1000}];t2=Table[pl[w], {w, 1, 1000}];t2-t1 (* Second program: *) Array[Total@ IntegerLength[FactorInteger[#][[All, 1]]] - IntegerLength@ # - Boole[# == 1] &, 108] (* Michael De Vlieger, Dec 16 2017 *)
-
PARI
A095407(n) = vecsum(apply(p->#digits(p), factor(n)[, 1])); A095408(n) = (A095407(n) - #digits(n)); \\ Antti Karttunen, Dec 16 2017