A095662 Seventh column (m=6) of (1,3)-Pascal triangle A095660.
3, 19, 70, 196, 462, 966, 1848, 3300, 5577, 9009, 14014, 21112, 30940, 44268, 62016, 85272, 115311, 153615, 201894, 262108, 336490, 427570, 538200, 671580, 831285, 1021293, 1246014, 1510320, 1819576, 2179672, 2597056, 3078768, 3632475
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Programs
-
Mathematica
CoefficientList[Series[(3-2x)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{3,19,70,196,462,966,1848},40] (* Harvey P. Dale, Mar 30 2014 *)
Formula
G.f.: (3-2*x)/(1-x)^7.
a(n)= binomial(n+5, 5)*(n+18)/6 = 3*b(n)-2*b(n-1), with b(n):=binomial(n+6, 6); cf. A000579.
a(0)=3, a(1)=19, a(2)=70, a(3)=196, a(4)=462, a(5)=966, a(6)=1848, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Mar 30 2014
Comments