A095665 Tenth column (m=9) of (1,3)-Pascal triangle A095660.
3, 28, 145, 550, 1705, 4576, 11011, 24310, 50050, 97240, 179894, 319124, 545870, 904400, 1456730, 2288132, 3513917, 5287700, 7811375, 11347050, 16231215, 22891440, 31865925, 43826250, 59603700, 80219568, 106919868, 141214920
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
Crossrefs
Ninth column: A095663.
Programs
-
Mathematica
Table[Binomial[n+8,8] (n+27)/9,{n,0,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{3,28,145,550,1705,4576,11011,24310,50050,97240},30] (* Harvey P. Dale, Oct 13 2017 *)
Formula
a(n)= binomial(n+8, 8)*(n+27)/9 = 3*b(n)-2*b(n-1), with b(n):=binomial(n+9, 9); cf. A000582.
G.f.: (3-2*x)/(1-x)^10.
Comments