A095671 Ninth column (m=8) of (1,4)-Pascal triangle A095666.
4, 33, 153, 525, 1485, 3663, 8151, 16731, 32175, 58630, 102102, 171054, 277134, 436050, 668610, 1001946, 1470942, 2119887, 3004375, 4193475, 5772195, 7844265, 10535265, 13996125, 18407025, 23981724, 30972348, 39674668, 50433900
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
Programs
-
Mathematica
CoefficientList[Series[(4-3x)/(1-x)^9,{x,0,30}],x] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{4,33,153,525,1485,3663,8151,16731,32175},30] (* Harvey P. Dale, Jul 07 2015 *)
-
Maxima
A095671(n):=(n+32)*binomial(n+7, 7)/8$ makelist(A095671(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
Formula
G.f.: (4-3*x)/(1-x)^9.
a(n) = 4*b(n)-3*b(n-1) =(n+32)*binomial(n+7, 7)/8, with b(n):=binomial(n+8, 8)=A000581(n+8, 8).
a(0)=4, a(1)=33, a(2)=153, a(3)=525, a(4)=1485, a(5)=3663, a(6)=8151, a(7)=16731, a(8)=32175, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Jul 07 2015
Comments