cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095671 Ninth column (m=8) of (1,4)-Pascal triangle A095666.

Original entry on oeis.org

4, 33, 153, 525, 1485, 3663, 8151, 16731, 32175, 58630, 102102, 171054, 277134, 436050, 668610, 1001946, 1470942, 2119887, 3004375, 4193475, 5772195, 7844265, 10535265, 13996125, 18407025, 23981724, 30972348, 39674668, 50433900
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

If Y is a 4-subset of an n-set X then, for n>=11, a(n-11) is the number of 8-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Programs

  • Mathematica
    CoefficientList[Series[(4-3x)/(1-x)^9,{x,0,30}],x] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{4,33,153,525,1485,3663,8151,16731,32175},30] (* Harvey P. Dale, Jul 07 2015 *)
  • Maxima
    A095671(n):=(n+32)*binomial(n+7, 7)/8$
    makelist(A095671(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

G.f.: (4-3*x)/(1-x)^9.
a(n) = 4*b(n)-3*b(n-1) =(n+32)*binomial(n+7, 7)/8, with b(n):=binomial(n+8, 8)=A000581(n+8, 8).
a(0)=4, a(1)=33, a(2)=153, a(3)=525, a(4)=1485, a(5)=3663, a(6)=8151, a(7)=16731, a(8)=32175, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Jul 07 2015