A095674 Triangle read by rows, formed from product of Pascal's triangle (A007318) and Aitken's (or Bell's) triangle (A011971).
1, 2, 2, 5, 7, 5, 15, 22, 25, 15, 52, 74, 97, 97, 52, 203, 277, 372, 449, 411, 203, 877, 1154, 1524, 1948, 2209, 1892, 877, 4140, 5294, 6816, 8734, 10718, 11570, 9402, 4140, 21147, 26441, 33255, 41954, 52357, 62107, 64404, 50127, 21147, 115975, 142416
Offset: 0
Examples
Triangle begins: 1 2 2 5 7 5 15 22 25 15 52 74 97 97 52 203 277 372 449 411 203
Programs
-
Mathematica
a[0, 0] = 1; a[n_, 0] := a[n - 1, n - 1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k - 1] + a[n - 1, k - 1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 9}, {r, 0, 9}]; pm = Table[p[n, r], {n, 0, 9}, {r, 0, 9}]; t = Flatten[pm.am]; Delete[ t, Position[t, 0]] (* Robert G. Wilson v, Jul 12 2004 *)
Extensions
More terms from Robert G. Wilson v, Jul 13 2004
Comments