A095678 Minimal sequence such that all triples of consecutive numbers have no common divisor greater than 1, but all three pairs within the triples are not coprime.
6, 10, 15, 12, 20, 45, 18, 40, 75, 24, 50, 135, 36, 80, 225, 48, 100, 375, 54, 160, 405, 72, 200, 675, 96, 250, 1125, 108, 320, 1215, 144, 400, 1875, 162, 500, 2025, 192, 640, 3375, 216, 800, 3645, 288, 1000, 5625, 324, 1250, 6075, 384, 1280, 9375, 432
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
seq1[p_, q_, lim_] := Sort[Flatten[Table[p^i * q^j, {i, 1, Log[p, lim]}, {j, 1, Log[q, lim/p^i]}]]]; seq[lim_] := Module[{s1 = seq1[2, 3, lim], s2 = seq1[2, 5, lim], s3 = seq1[3, 5, lim], ns}, ns = Length[s3]; Flatten[Transpose[{s1[[1;;ns]], s2[[1;;ns]], s3}]]]; seq[10^4] (* Amiram Eldar, Sep 29 2024 *)
Formula
gcd(a(n),a(n+1),a(n+2)) = 1, gcd(a(n),a(n+1)) > 1, gcd(a(n),a(n+2)) > 1 and gcd(a(n+1),a(n+2)) > 1.
From Jianing Song, Jun 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 7/8. - Amiram Eldar, Sep 29 2024