A095685 Expansion of (1+x)^4/(1-11*x+11*x^2-x^3).
1, 15, 160, 1600, 15856, 156976, 1553920, 15382240, 152268496, 1507302736, 14920758880, 147700286080, 1462082101936, 14473120733296, 143269125231040, 1418218131577120, 14038912190540176, 138970903773824656, 1375670125547706400, 13617730351703239360
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
Crossrefs
Cf. A072256.
Programs
-
Mathematica
CoefficientList[Series[(1 + x)^4/(1 - 11*x + 11*x^2 - x^3), {x, 0, 20}], x] (* Wesley Ivan Hurt, Dec 27 2023 *)
-
PARI
Vec((1+x)^4/(1-11*x+11*x^2-x^3) + O(x^25)) \\ Colin Barker, Mar 05 2016
Formula
a(n) = 18*A072256(n)-2, n>1. - R. J. Mathar, Jan 11 2009
a(n) = -2+3*(5-2*sqrt(6))^n*(3+sqrt(6))-3*(-3+sqrt(6))*(5+2*sqrt(6))^n for n>1. - Colin Barker, Mar 05 2016