A095699 Number of partitions of n into generalized pentagonal numbers.
1, 1, 2, 2, 3, 4, 5, 7, 8, 10, 12, 14, 18, 20, 25, 29, 34, 40, 45, 53, 60, 69, 80, 89, 103, 114, 131, 147, 165, 186, 207, 232, 258, 286, 319, 352, 392, 432, 477, 525, 578, 636, 699, 765, 839, 916, 1002, 1093, 1192, 1298, 1413, 1536, 1671, 1810, 1965, 2126, 2304
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[1/Product[(1-x^(k*(3*k-1)/2)) * (1-x^(k*(3*k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 10 2017 *)
-
PARI
b(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8; \\ A001318 N=66; x='x+O('x^N); Vec(1/prod(k=1,N, (1-x^b(k))) ) \\ Joerg Arndt, Oct 13 2014
Formula
G.f.: 1/Product_{k>=1} (1-x^(k*(3*k-1)/2))*(1-x^(k*(3*k+1)/2)).