cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A218379 Number of partitions of n into pentagonal parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 9, 9, 10, 11, 11, 13, 13, 14, 15, 15, 17, 17, 19, 21, 22, 24, 24, 26, 28, 29, 31, 31, 34, 36, 38, 41, 42, 45, 47, 50, 53, 54, 57, 59, 63, 67, 69, 73, 76, 80, 84, 87, 91, 94, 99, 103, 107, 112, 118, 124
Offset: 0

Views

Author

Antonio Roldán, Oct 27 2012

Keywords

Examples

			A(15)=5 because 15 = 12+1+1+1 = 5+5+5 = 5+5+1+1+1+1+1 = 5+1+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 with 12, 5, 1 pentagonal numbers.
		

Crossrefs

Programs

  • PARI
    {for (n=1, 100,p=truncate((1+sqrt(24*n+1))/6);m=polcoeff(prod(k=1,p,q=(3*k-1)*k/2;sum(h=0,truncate(n/q+1),x^(h*q))),n);write("B218379.txt",n," ",m))}

Extensions

a(0) = 1 prepended by Seiichi Manyama, Dec 09 2017

A294591 Expansion of Product_{k>=1} 1/((1 - x^(2*k-1))^(k*(3*k-1)/2)*(1 - x^(2*k))^(k*(3*k+1)/2)).

Original entry on oeis.org

1, 1, 3, 8, 18, 40, 88, 184, 384, 783, 1573, 3110, 6087, 11745, 22450, 42466, 79597, 147890, 272632, 498696, 905846, 1634270, 2929804, 5220581, 9249440, 16297659, 28567571, 49825296, 86487331, 149438681, 257077485, 440378787, 751313413, 1276765557, 2161511352
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Comments

Euler transform of the generalized pentagonal numbers (A001318).

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (3 k - 1)/2) (1 - x^(2 k))^(k (3 k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Ceiling[d/2] Ceiling[(3 d + 1)/2]/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A001318(k).
a(n) ~ exp(Pi * 2^(5/4) / (3*5^(1/4)) * n^(3/4) + 3*Zeta(3) * sqrt(5*n) / (2^(3/2) * Pi^2) + (Pi/48 - 45*Zeta(3)^2 / (8*Pi^5)) * (5*n/2)^(1/4) + 225*Zeta(3)^3 / (8*Pi^8) - 11*Zeta(3) / (64*Pi^2))/ (2^(95/48) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 07 2017

A290942 Number of partitions of n into distinct generalized pentagonal numbers (A001318).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 4, 3, 3, 3, 2, 5, 4, 5, 4, 2, 3, 3, 6, 6, 5, 5, 4, 5, 7, 8, 8, 7, 6, 6, 6, 8, 9, 9, 9, 7, 8, 9, 9, 11, 10, 11, 11, 10, 12, 10, 14, 15, 14, 14, 11, 13, 13, 17, 17, 14, 15, 14, 17, 20, 19, 20, 20, 20, 21, 20, 21, 21, 25, 26, 23, 22, 21, 24, 27
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 14 2017

Keywords

Examples

			a(15) = 3 because we have [15], [12, 2, 1] and [7, 5, 2, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Product[(1 + x^(k (3 k - 1)/2)) (1 + x^(k (3 k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(3*k-1)/2))*(1 + x^(k*(3*k+1)/2)).

A294621 Number of partitions of n into generalized heptagonal numbers (A085787).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 26, 29, 32, 35, 38, 41, 45, 49, 53, 59, 64, 69, 73, 80, 87, 94, 101, 109, 117, 125, 134, 145, 156, 167, 178, 190, 202, 217, 232, 249, 265, 282, 299, 318, 339, 361, 384, 408, 432, 457, 484, 514, 545, 578, 610, 646
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Examples

			a(8) = 4 because we have [7, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/((1 - x^(k (5 k - 3)/2)) (1 - x^(k (5 k + 3)/2))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^(k*(5*k-3)/2))*(1 - x^(k*(5*k+3)/2))).

A294622 Number of partitions of n into generalized octagonal numbers (A001082).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 8, 8, 9, 9, 10, 13, 13, 14, 16, 17, 20, 20, 21, 24, 25, 28, 31, 33, 36, 37, 40, 45, 47, 50, 55, 59, 65, 67, 70, 77, 81, 87, 94, 99, 107, 111, 117, 127, 133, 141, 152, 160, 172, 178, 186, 201, 210, 223, 237, 249, 267, 276, 289, 308, 322, 341, 360, 378, 401
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Examples

			a(8) = 3 because we have [8], [5, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 74; CoefficientList[Series[Product[1/((1 - x^(k (3 k - 2))) (1 - x^(k (3 k + 2)))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^(k*(3*k-2)))*(1 - x^(k*(3*k+2)))).

A296237 Expansion of Product_{k>0} 1/(1 - x^(k*(3*k+1)/2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 5, 4, 6, 4, 6, 5, 6, 6, 7, 7, 7, 7, 9, 8, 10, 9, 11, 10, 11, 12, 12, 13, 13, 14, 15, 14, 17, 16, 19, 18, 20, 20, 21, 22, 23, 24, 25, 25, 28, 27, 30, 29, 33, 32, 35, 35, 37, 38, 39
Offset: 0

Views

Author

Seiichi Manyama, Dec 09 2017

Keywords

Comments

Integer partitions into second or "negative" pentagonal numbers (A005449) .

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - x^(k*(3*k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 10 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^(k*(3*k+1)/2))))

A025781 Expansion of 1/((1-x)(1-x^5)(1-x^12)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 5, and 12. - Joerg Arndt, Mar 18 2013
Up to and including a(21) this is the same as the expansion of Product_{k>=1} 1/(1-x^(k*(3*k-1)/2)), which appears as a convolution factor in A095699. - R. J. Mathar, Mar 18 2013

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^5)(1-x^12)),{x,0,70}],x] (* or *) LinearRecurrence[{1,0,0,0,1,-1,0,0,0,0,0,1,-1,0,0,0,-1,1},{1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,5,5,6},70] (* Harvey P. Dale, May 11 2014 *)

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=2, a(7)=2, a(8)=2, a(9)=2, a(10)=3, a(11)=3, a(12)=4, a(13)=4, a(14)=4, a(15)=5, a(16)=5, a(17)=6, a(n)=a(n-1)+a(n-5)-a(n-6)+a(n-12)-a(n-13)-a(n-17)+a(n-18). - Harvey P. Dale, May 11 2014
Showing 1-7 of 7 results.