A095729 A002260 squared, as an infinite lower triangular matrix, read by rows.
1, 3, 4, 6, 10, 9, 10, 18, 21, 16, 15, 28, 36, 36, 25, 21, 40, 54, 60, 55, 36, 28, 54, 75, 88, 90, 78, 49, 36, 70, 99, 120, 130, 126, 105, 64, 45, 88, 126, 156, 175, 180, 168, 136, 81, 55, 108, 156, 196, 225, 240, 238, 216, 171, 100, 66, 130, 189, 240, 280, 306, 315, 304
Offset: 1
Examples
First few rows of the triangle are 1; 3, 4; 6, 10, 9; 10, 18, 21, 16; 15, 28, 36, 36, 25; 21, 40, 54, 60, 55, 36, ... [1 0 0 / 1 2 0 / 1 2 3]^2 = [1 0 0 / 3 4 0 / 6 10 9]. Next higher order matrix generates rows of the one lower order, plus the next row. For example, the 4 X 4 matrix [1 0 0 0 / 1 2 0 0 / 1 2 3 0 / 1 2 3 4]^2 = [1 0 0 0 / 3 4 0 0 / 6 10 9 0 / 10 18 21 16].
Programs
-
Mathematica
FindRow[n_] := Module[{i = 0}, While[Binomial[i, 2] < n, i++ ]; i - 1]; FindCol[n_] := n - Binomial[FindRow[n], 2]; A095729[n_] := FindCol[n](Binomial[FindRow[n]+1, 2] - Binomial[FindCol[n], 2]); Table[A095729[i], {i, 1, 91}] (* Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007 *)
Extensions
More terms from Keith Schneider (schneidk(AT)email.unc.edu), Jul 23 2007
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Comments