A095730
Primes p whose Zeckendorf-expansion A014417(p) is palindromic.
Original entry on oeis.org
127, 197, 1949, 2137, 3323, 3821, 7253, 8117, 10243, 13183, 14947, 15131, 30941, 31721, 39607, 43691, 49207, 54773, 62213, 66413, 70141, 70429, 70607, 71089, 123457, 123923, 129023, 134039, 137699, 145391, 149381, 157219, 162523, 167759, 172357, 176237, 181253
Offset: 1
A095741
Number of base-2 palindromic primes (A016041) in range [2^2n,2^(2n+1)].
Original entry on oeis.org
2, 2, 3, 3, 7, 12, 23, 40, 94, 142, 271, 480, 856, 1721, 3099, 5572, 10799, 20782, 39468, 72672, 139867, 274480, 520376, 986318, 1914097, 3726617, 7107443, 13682325, 26430797, 51412565, 99204128, 190457946, 372035117, 727434192, 1407026351, 2724590109, 5315491839
Offset: 1
Bisection of the first diagonal of triangle
A095759.
-
palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Table[Length[Select[Range[2^(2n), 2^(2n + 1)], palindromicQ[#, 2] && PrimeQ[#] &]], {n, 10}] (* Alonso del Arte, Jan 13 2012 *)
-
m=vector(65536);u=vector(#m);u[1]=1;for(b=1,#m-1,c=b;e=2^floor(log(b+.5)/log(2));d=0;u[b+1]=e;while(c>0,d=d+e*(c%2);c=floor(c/2);e=e/2);m[b+1]=d);for(x=0,31,h=0;y=2^x;for(w=y,2*y-1,if(x<16,v1=4*y*w+m[w+1];v2=v1+2*y,w1=floor(w/65536);w2=w-65536*w1;v1=262144*y*w1+4*y*w2+65536*u[w1+1]/u[w2+1]*m[w2+1]+m[w1+1];v2=v1+2*y);if(isprime(v1),h++);if(isprime(v2),h++));print(2*x+3" bits: "h)) \\ Martin Raab, Jan 13 2012
A095732
Sum of A095734(p) for all primes p such that Fib(n+1) <= p < Fib(n+2) (where Fib = A000045).
Original entry on oeis.org
0, 0, 1, 3, 1, 3, 7, 10, 12, 23, 31, 58, 93, 171, 243, 422, 634, 1142, 1684, 2971, 4406, 7768, 11502, 20502, 30242, 53039, 79161, 138410, 207536, 362391, 544895, 947189, 1431794, 2473232, 3749944, 6459373, 9823917, 16879245, 25745781, 44112347
Offset: 1
a(1) = a(2) = 0, as there are no primes in ranges [1,2[ and [2,3[. a(3)=1 as in [3,5[ there is prime 3 with Fibonacci-representation 100, which is just a one fibit-flip away from being a palindrome (i.e. A095734(3)=1). a(4)=3, as in [5,8[ there are primes 5 and 7, whose Fibonacci-representations are 1000 and 1010 respectively and the other needs one bit-flip and the other two to become palindromes and 1 + 2 = 3. a(5)=1, as in [8,13[ there is only one prime 11, with Zeckendorf-representation 10100, which needs to have just its least significant fibit flipped from 0 to 1 to become palindrome.
Showing 1-3 of 3 results.
Comments