cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095730 Primes p whose Zeckendorf-expansion A014417(p) is palindromic.

Original entry on oeis.org

127, 197, 1949, 2137, 3323, 3821, 7253, 8117, 10243, 13183, 14947, 15131, 30941, 31721, 39607, 43691, 49207, 54773, 62213, 66413, 70141, 70429, 70607, 71089, 123457, 123923, 129023, 134039, 137699, 145391, 149381, 157219, 162523, 167759, 172357, 176237, 181253
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Crossrefs

Intersection of A000040 and A094202. Cf. A095731 for number of occurrences. A095733 shows the corresponding Fibonacci-representations.

A095741 Number of base-2 palindromic primes (A016041) in range [2^2n,2^(2n+1)].

Original entry on oeis.org

2, 2, 3, 3, 7, 12, 23, 40, 94, 142, 271, 480, 856, 1721, 3099, 5572, 10799, 20782, 39468, 72672, 139867, 274480, 520376, 986318, 1914097, 3726617, 7107443, 13682325, 26430797, 51412565, 99204128, 190457946, 372035117, 727434192, 1407026351, 2724590109, 5315491839
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Note that there are no such primes in any range ]2^(2n-1),2^2n], as all even-length binary palindromes are divisible by 3 (cf. A048702).
The ratio a(n)/A036378(2n) converges as follows: 1, 0.4, 0.230769, 0.069767, 0.051095, 0.025862, 0.014268, 0.007006, 0.00461, 0.00193, 0.00101, 0.000487, 0.000235, 0.000127, 0.000061, 0.000029

Crossrefs

Bisection of the first diagonal of triangle A095759.

Programs

  • Mathematica
    palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Table[Length[Select[Range[2^(2n), 2^(2n + 1)], palindromicQ[#, 2] && PrimeQ[#] &]], {n, 10}] (* Alonso del Arte, Jan 13 2012 *)
  • PARI
    m=vector(65536);u=vector(#m);u[1]=1;for(b=1,#m-1,c=b;e=2^floor(log(b+.5)/log(2));d=0;u[b+1]=e;while(c>0,d=d+e*(c%2);c=floor(c/2);e=e/2);m[b+1]=d);for(x=0,31,h=0;y=2^x;for(w=y,2*y-1,if(x<16,v1=4*y*w+m[w+1];v2=v1+2*y,w1=floor(w/65536);w2=w-65536*w1;v1=262144*y*w1+4*y*w2+65536*u[w1+1]/u[w2+1]*m[w2+1]+m[w1+1];v2=v1+2*y);if(isprime(v1),h++);if(isprime(v2),h++));print(2*x+3" bits: "h)) \\ Martin Raab, Jan 13 2012

Formula

a(n) = A117773(2*n+1). - Chai Wah Wu, Jul 05 2019

Extensions

a(27)-a(32) from Martin Raab, Oct 20 2015
a(33)-a(35) from Chai Wah Wu, Jul 05 2019
a(36)-a(37) from Chai Wah Wu, Jul 11 2019

A095732 Sum of A095734(p) for all primes p such that Fib(n+1) <= p < Fib(n+2) (where Fib = A000045).

Original entry on oeis.org

0, 0, 1, 3, 1, 3, 7, 10, 12, 23, 31, 58, 93, 171, 243, 422, 634, 1142, 1684, 2971, 4406, 7768, 11502, 20502, 30242, 53039, 79161, 138410, 207536, 362391, 544895, 947189, 1431794, 2473232, 3749944, 6459373, 9823917, 16879245, 25745781, 44112347
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

Ratio a(n)/A095354(n) converges as follows: 1, 1, 1, 1.5, 1, 1, 2.333333, 2, 1.714286, 2.090909, 1.9375, 2.416667, 2.513514, 3.109091, 2.892857, 3.349206, 3.20202, 3.845118, 3.676856, 4.22017, 4.053358, 4.640382, 4.420446, 5.088608, 4.828676, 5.446601, 5.212762, 5.838853, 5.611963, 6.257939, 6.017615, 6.668795, 6.424778, 7.069164, 6.819283, 7.467319, 7.215081, 7.868411, 7.614126, 8.269242

Examples

			a(1) = a(2) = 0, as there are no primes in ranges [1,2[ and [2,3[. a(3)=1 as in [3,5[ there is prime 3 with Fibonacci-representation 100, which is just a one fibit-flip away from being a palindrome (i.e. A095734(3)=1). a(4)=3, as in [5,8[ there are primes 5 and 7, whose Fibonacci-representations are 1000 and 1010 respectively and the other needs one bit-flip and the other two to become palindromes and 1 + 2 = 3. a(5)=1, as in [8,13[ there is only one prime 11, with Zeckendorf-representation 10100, which needs to have just its least significant fibit flipped from 0 to 1 to become palindrome.
		

Crossrefs

Cf. A095730, A095731, A095742 (sums of similar assymetricity measures for binary-expansion).
Showing 1-3 of 3 results.