A095743 Primes p for which A037888(p) = 1, i.e., primes whose binary expansion is almost symmetric, needing just a one-bit flip to become palindrome.
2, 11, 13, 19, 23, 29, 37, 41, 47, 59, 61, 67, 89, 97, 103, 131, 137, 157, 167, 173, 181, 191, 193, 199, 211, 223, 227, 229, 239, 251, 277, 281, 317, 337, 349, 367, 373, 383, 401, 419, 431, 463, 467, 479, 487, 491, 503, 509, 521, 563, 569, 577
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Antti Karttunen and J. Moyer, C-program for computing the initial terms of this sequence
Programs
-
Maple
f:= proc(n) local L,i; L:= convert(n,base,2); add(abs(L[i]-L[-i]),i=1..floor(nops(L)/2)) end proc: select(t -> f(t) = 1, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Dec 04 2023