A095765 Number of primes in range [2^n+1, 2^(n+1)] whose binary expansion begins '10' (A080165).
0, 1, 1, 3, 4, 6, 12, 22, 38, 70, 130, 237, 441, 825, 1539, 2897, 5453, 10335, 19556, 37243, 70938, 135555, 259586, 497790, 956126, 1839597, 3544827, 6839282, 13212389, 25552386, 49472951, 95883938, 186011076, 361177503, 701906519
Offset: 1
Keywords
Examples
Table showing the derivation of the initial terms: n 2^n+1 2^(n+1) a(n) primes starting '10' in binary 1 3 4 0 - 2 5 8 1 5 = 101_2 3 9 16 1 11 = 1011_2 4 17 32 3 17 = 10001_2, 19 = 10011_2, 23 = 10111_2
Links
Programs
-
Mathematica
a[n_] := PrimePi[2^n + 2^(n - 1) - 1] - PrimePi[2^n]; Array[a, 35] (* Robert G. Wilson v, Jan 24 2006 *)
Extensions
a(34) and a(35) from Robert G. Wilson v, Jan 24 2006
Edited, restoring meaning of name, by Peter Munn, Jun 27 2023
Comments