cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095765 Number of primes in range [2^n+1, 2^(n+1)] whose binary expansion begins '10' (A080165).

Original entry on oeis.org

0, 1, 1, 3, 4, 6, 12, 22, 38, 70, 130, 237, 441, 825, 1539, 2897, 5453, 10335, 19556, 37243, 70938, 135555, 259586, 497790, 956126, 1839597, 3544827, 6839282, 13212389, 25552386, 49472951, 95883938, 186011076, 361177503, 701906519
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

I.e., number of primes p such that 2^n < p < (2^n + 2^(n-1)).
Ratio a(n)/A036378(n) converges as follows: 0, 0.5, 0.5, 0.6, 0.571429, 0.461538, 0.521739, 0.511628, 0.506667, 0.510949, 0.509804, 0.510776, 0.505734, 0.511787, 0.507921, 0.507444, 0.507303, 0.506866, 0.506173, 0.506115, 0.505487, 0.505395, 0.505318, 0.504951, 0.504786, 0.504588, 0.504437, 0.504301, 0.50415, 0.504016, 0.503887, 0.503763, 0.503654
Ratio a(n)/A095766(n) converges as follows: 0, 1, 1, 1.5, 1.333333, 0.857143, 1.090909, 1.047619, 1.027027, 1.044776, 1.04, 1.044053, 1.023202, 1.048285, 1.032193, 1.030228, 1.029645, 1.027847, 1.025001, 1.024764, 1.022191, 1.021815, 1.021501, 1.020003, 1.019331, 1.01852, 1.017908, 1.017353, 1.016737, 1.016195, 1.015669, 1.015164, 1.014723
I think this explains also the bias present in ratios shown at A095297, A095298, etc.

Examples

			Table showing the derivation of the initial terms:
  n   2^n+1  2^(n+1)  a(n)   primes starting '10' in binary
  1     3       4      0       -
  2     5       8      1       5 = 101_2
  3     9      16      1      11 = 1011_2
  4    17      32      3      17 = 10001_2, 19 = 10011_2, 23 = 10111_2
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimePi[2^n + 2^(n - 1) - 1] - PrimePi[2^n];
    Array[a, 35] (* Robert G. Wilson v, Jan 24 2006 *)

Formula

a(n) = A036378(n)-A095766(n).

Extensions

a(34) and a(35) from Robert G. Wilson v, Jan 24 2006
Edited, restoring meaning of name, by Peter Munn, Jun 27 2023