cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A095778 Values of n for which A095777(n) is 9 (those terms which are expressible in decimal digits for bases 2 through 10, but not for base 11).

Original entry on oeis.org

10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 352, 353
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Comments

Numbers with at least one digit A (=10) in their representation in base 11. Complementary sequence to A171397. - François Marques, Oct 11 2020

Examples

			a(5)=54 because 54 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 11. Like so: 110110, 2000, 312, 204, 130, 105, 66, 60, 54. In base 11, 54 is 4A.
		

Crossrefs

Cf. A095777.
Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), this sequence (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=9 then S := [op(S), n]; fi; fi; od; S;
    # or
    seq(`if`(numboccur(10, convert(n, base, 11))>0, n, NULL), n=0..1000); # François Marques, Oct 11 2020
  • Mathematica
    Select[Range[400],Max[IntegerDigits[#,11]]>9&] (* Harvey P. Dale, Sep 30 2018 *)
  • PARI
    isok(m) = #select(x->(x==10), digits(m, 11)) >= 1; \\ François Marques, Oct 11 2020
    
  • Python
    from gmpy2 import digits
    def A095778(n):
        def f(x):
            l = (s:=digits(x,11)).find('a')
            if l >= 0: s = s[:l]+'9'*(len(s)-l)
            return n+int(s)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A095779 Values of n for which A095777(n) is 10 (those terms which are expressible in decimal digits for bases 2 through 11, but not for base 12).

Original entry on oeis.org

11, 22, 23, 34, 35, 46, 47, 58, 59, 70, 71, 82, 83, 94, 95, 106, 107, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 154, 155, 166, 167, 178, 179, 190, 191, 202, 203, 214, 215, 226, 227, 250, 251, 262
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=35 because 35 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 12. Like so: 100011, 1022, 203, 120, 55, 50, 43, 38, 35, 32. In base 12, 35 is 2B.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=10 then S := [op(S), n]; fi; fi; od; S;

A095780 Values of n for which A095777(n) is 11 (those terms which are expressible in decimal digits for bases 2 through 12, but not for base 13).

Original entry on oeis.org

12, 24, 25, 36, 37, 38, 49, 50, 51, 62, 63, 64, 75, 77, 88, 89, 90, 101, 102, 103, 144, 145, 146, 147, 148, 149, 150, 151, 152, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 180, 181, 192, 193, 194, 205, 206, 207, 218, 220, 244, 245, 246, 257, 258, 259, 297
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=37 because 37 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 13. Like so: 100101, 1101, 211, 221, 101, 52, 45, 41, 37, 34, 31. In base 13, 37 is 2B.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=11 then S := [op(S), n]; fi; fi; od; S;

A095781 Values of n for which A095777(n) is 12 (those terms which are expressible in decimal digits for bases 2 through 13, but not for base 14).

Original entry on oeis.org

13, 26, 27, 39, 40, 41, 52, 53, 55, 66, 67, 68, 69, 80, 81, 96, 97, 108, 169, 170, 171, 172, 173, 174, 176, 177, 182, 183, 184, 185, 187, 188, 189, 195, 209, 221, 222, 223, 248, 249, 290, 291, 292, 293, 338, 339, 341, 342, 343, 344, 345, 364, 365, 366, 367, 368
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=40 because 40 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 14. Like so: 101000, 1111, 220, 130, 104, 55, 50, 44, 40, 37, 34, 31. In base 14, 40 is 2C.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=12 then S := [op(S), n]; fi; fi; od; S;

A095782 Values of n for which A095777(n) is 13 (those terms which are expressible in decimal digits for bases 2 through 14, but not for base 15).

Original entry on oeis.org

14, 28, 29, 42, 44, 56, 57, 72, 73, 74, 85, 86, 100, 104, 196, 198, 199, 200, 201, 204, 210, 211, 212, 213, 216, 217, 224, 253, 254, 295, 392, 393, 396, 397, 398, 399, 434, 435, 436, 437, 438, 448, 449, 462, 463, 464, 507, 508, 509, 520, 521, 522, 523, 524
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=44 because 44 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 15. Like so: 101100, 1122, 230, 134, 112, 62, 54, 48, 44, 40, 38, 35, 32. In base 15, 44 is 2E.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 2000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=13 then S := [op(S), n]; fi; fi; od; S;

A095783 Values of n for which A095777(n) is 14 (those terms which are expressible in decimal digits for bases 2 through 15, but not for base 16).

Original entry on oeis.org

15, 30, 31, 45, 60, 61, 78, 79, 91, 92, 93, 225, 228, 229, 242, 243, 247, 255, 451, 456, 457, 510, 511, 525, 588, 589, 590, 591, 676, 677, 678, 679, 680, 690, 691, 693, 798, 799, 1014, 1023, 1036, 1185, 1190, 1191, 1192, 1372, 1373, 1386, 1387, 1404, 3458
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=60 because 60 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 16. Like so: 111100, 2020, 330, 220, 140, 114, 74, 66, 60, 55, 50, 48, 44, 40. In base 16, 60 is 3C.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 5000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=14 then S := [op(S), n]; fi; fi; od; S;

A095784 Values of n for which A095777(n) is 15 (those terms which are expressible in decimal digits for bases 2 through 16, but not for base 17).

Original entry on oeis.org

16, 33, 48, 84, 99, 256, 260, 261, 288, 512, 513, 592, 784, 785, 786, 787, 788, 789, 800, 801, 900, 915, 916, 917, 1040, 1041, 1380, 1381, 1395, 1400, 4400, 4401, 4416, 4609, 4610, 4611, 4624, 4628, 4629
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=99 because 99 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 17. Like so: 1100011, 10200, 1203, 344, 243, 201, 143, 120, 99, 90, 83, 78, 71, 69, 63. In base 17, 99 is 5E.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 5000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=15 then S := [op(S), n]; fi; fi; od; S;

A095785 Values of n for which A095777(n) is 16 (those terms which are expressible in decimal digits for bases 2 through 17, but not for base 18).

Original entry on oeis.org

17, 105, 289, 294, 902, 903, 904, 905, 918, 919, 5491, 5492, 5493, 5508, 5525, 16905, 16920, 16921, 270354, 271665, 271700, 271701, 275205, 275256, 3342391, 3342392, 3342405, 3342408, 3342409, 3342421, 3342422, 3342423, 3342424, 3342425, 3342438, 3342439
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Examples

			a(5)=902 because 902 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 18. Like so: 1110000110, 1020102, 32012, 12102, 4102, 2426, 1606, 1212, 902, 750, 632, 545, 486, 402, 386, 321. In base 18, 902 is 2E2.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 15000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=16 then S := [op(S), n]; fi; fi; od; S;
  • Mathematica
    b18Q[n_]:=Module[{idn=Table[IntegerDigits[n,b],{b,2,18}]},Max[Flatten[Most[ idn]]]<10 && Max[Last[idn]]>9]; Select[Range[50000],b18Q] (* Harvey P. Dale, Feb 09 2013 *)

Extensions

More terms from Harvey P. Dale, Feb 09 2013

A095786 Values of n for which A095777(n) is 17 (those terms which are expressible in decimal digits for bases 2 through 18, but not for base 19).

Original entry on oeis.org

18, 1027, 1028, 1029, 14745
Offset: 1

Views

Author

Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004

Keywords

Comments

The only term for all values of n up to 200000 which produces decimal digits for bases 2 through 19 is 19 itself.

Examples

			a(5)=14745 because 14745 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 19. Like so: 11100110011001, 202020010, 3212121, 432440, 152133, 60663, 34631, 22203, 14745, 10095, 8649, 6933, 5533, 4580, 3999, 3006, 2993. In base 19, 14745 is 22G1.
		

Crossrefs

Cf. A095777.

Programs

  • Maple
    S := []; for n from 1 to 15000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=17 then S := [op(S), n]; fi; fi; od; S;
Showing 1-9 of 9 results.