A095778
Values of n for which A095777(n) is 9 (those terms which are expressible in decimal digits for bases 2 through 10, but not for base 11).
Original entry on oeis.org
10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 352, 353
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=54 because 54 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 11. Like so: 110110, 2000, 312, 204, 130, 105, 66, 60, 54. In base 11, 54 is 4A.
-
S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=9 then S := [op(S), n]; fi; fi; od; S;
# or
seq(`if`(numboccur(10, convert(n, base, 11))>0, n, NULL), n=0..1000); # François Marques, Oct 11 2020
-
Select[Range[400],Max[IntegerDigits[#,11]]>9&] (* Harvey P. Dale, Sep 30 2018 *)
-
isok(m) = #select(x->(x==10), digits(m, 11)) >= 1; \\ François Marques, Oct 11 2020
-
from gmpy2 import digits
def A095778(n):
def f(x):
l = (s:=digits(x,11)).find('a')
if l >= 0: s = s[:l]+'9'*(len(s)-l)
return n+int(s)
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Dec 04 2024
A095779
Values of n for which A095777(n) is 10 (those terms which are expressible in decimal digits for bases 2 through 11, but not for base 12).
Original entry on oeis.org
11, 22, 23, 34, 35, 46, 47, 58, 59, 70, 71, 82, 83, 94, 95, 106, 107, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 154, 155, 166, 167, 178, 179, 190, 191, 202, 203, 214, 215, 226, 227, 250, 251, 262
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=35 because 35 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 12. Like so: 100011, 1022, 203, 120, 55, 50, 43, 38, 35, 32. In base 12, 35 is 2B.
-
S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=10 then S := [op(S), n]; fi; fi; od; S;
A095780
Values of n for which A095777(n) is 11 (those terms which are expressible in decimal digits for bases 2 through 12, but not for base 13).
Original entry on oeis.org
12, 24, 25, 36, 37, 38, 49, 50, 51, 62, 63, 64, 75, 77, 88, 89, 90, 101, 102, 103, 144, 145, 146, 147, 148, 149, 150, 151, 152, 156, 157, 158, 159, 160, 161, 162, 163, 165, 168, 180, 181, 192, 193, 194, 205, 206, 207, 218, 220, 244, 245, 246, 257, 258, 259, 297
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=37 because 37 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 13. Like so: 100101, 1101, 211, 221, 101, 52, 45, 41, 37, 34, 31. In base 13, 37 is 2B.
-
S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=11 then S := [op(S), n]; fi; fi; od; S;
A095781
Values of n for which A095777(n) is 12 (those terms which are expressible in decimal digits for bases 2 through 13, but not for base 14).
Original entry on oeis.org
13, 26, 27, 39, 40, 41, 52, 53, 55, 66, 67, 68, 69, 80, 81, 96, 97, 108, 169, 170, 171, 172, 173, 174, 176, 177, 182, 183, 184, 185, 187, 188, 189, 195, 209, 221, 222, 223, 248, 249, 290, 291, 292, 293, 338, 339, 341, 342, 343, 344, 345, 364, 365, 366, 367, 368
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=40 because 40 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 14. Like so: 101000, 1111, 220, 130, 104, 55, 50, 44, 40, 37, 34, 31. In base 14, 40 is 2C.
-
S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=12 then S := [op(S), n]; fi; fi; od; S;
A095782
Values of n for which A095777(n) is 13 (those terms which are expressible in decimal digits for bases 2 through 14, but not for base 15).
Original entry on oeis.org
14, 28, 29, 42, 44, 56, 57, 72, 73, 74, 85, 86, 100, 104, 196, 198, 199, 200, 201, 204, 210, 211, 212, 213, 216, 217, 224, 253, 254, 295, 392, 393, 396, 397, 398, 399, 434, 435, 436, 437, 438, 448, 449, 462, 463, 464, 507, 508, 509, 520, 521, 522, 523, 524
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=44 because 44 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 15. Like so: 101100, 1122, 230, 134, 112, 62, 54, 48, 44, 40, 38, 35, 32. In base 15, 44 is 2E.
-
S := []; for n from 1 to 2000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=13 then S := [op(S), n]; fi; fi; od; S;
A095783
Values of n for which A095777(n) is 14 (those terms which are expressible in decimal digits for bases 2 through 15, but not for base 16).
Original entry on oeis.org
15, 30, 31, 45, 60, 61, 78, 79, 91, 92, 93, 225, 228, 229, 242, 243, 247, 255, 451, 456, 457, 510, 511, 525, 588, 589, 590, 591, 676, 677, 678, 679, 680, 690, 691, 693, 798, 799, 1014, 1023, 1036, 1185, 1190, 1191, 1192, 1372, 1373, 1386, 1387, 1404, 3458
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=60 because 60 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 16. Like so: 111100, 2020, 330, 220, 140, 114, 74, 66, 60, 55, 50, 48, 44, 40. In base 16, 60 is 3C.
-
S := []; for n from 1 to 5000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=14 then S := [op(S), n]; fi; fi; od; S;
A095784
Values of n for which A095777(n) is 15 (those terms which are expressible in decimal digits for bases 2 through 16, but not for base 17).
Original entry on oeis.org
16, 33, 48, 84, 99, 256, 260, 261, 288, 512, 513, 592, 784, 785, 786, 787, 788, 789, 800, 801, 900, 915, 916, 917, 1040, 1041, 1380, 1381, 1395, 1400, 4400, 4401, 4416, 4609, 4610, 4611, 4624, 4628, 4629
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=99 because 99 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 17. Like so: 1100011, 10200, 1203, 344, 243, 201, 143, 120, 99, 90, 83, 78, 71, 69, 63. In base 17, 99 is 5E.
-
S := []; for n from 1 to 5000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=15 then S := [op(S), n]; fi; fi; od; S;
A095785
Values of n for which A095777(n) is 16 (those terms which are expressible in decimal digits for bases 2 through 17, but not for base 18).
Original entry on oeis.org
17, 105, 289, 294, 902, 903, 904, 905, 918, 919, 5491, 5492, 5493, 5508, 5525, 16905, 16920, 16921, 270354, 271665, 271700, 271701, 275205, 275256, 3342391, 3342392, 3342405, 3342408, 3342409, 3342421, 3342422, 3342423, 3342424, 3342425, 3342438, 3342439
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=902 because 902 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 18. Like so: 1110000110, 1020102, 32012, 12102, 4102, 2426, 1606, 1212, 902, 750, 632, 545, 486, 402, 386, 321. In base 18, 902 is 2E2.
-
S := []; for n from 1 to 15000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=16 then S := [op(S), n]; fi; fi; od; S;
-
b18Q[n_]:=Module[{idn=Table[IntegerDigits[n,b],{b,2,18}]},Max[Flatten[Most[ idn]]]<10 && Max[Last[idn]]>9]; Select[Range[50000],b18Q] (* Harvey P. Dale, Feb 09 2013 *)
A095786
Values of n for which A095777(n) is 17 (those terms which are expressible in decimal digits for bases 2 through 18, but not for base 19).
Original entry on oeis.org
18, 1027, 1028, 1029, 14745
Offset: 1
Chuck Seggelin (seqfan(AT)plastereddragon.com), Jun 05 2004
a(5)=14745 because 14745 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 19. Like so: 11100110011001, 202020010, 3212121, 432440, 152133, 60663, 34631, 22203, 14745, 10095, 8649, 6933, 5533, 4580, 3999, 3006, 2993. In base 19, 14745 is 22G1.
-
S := []; for n from 1 to 15000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=17 then S := [op(S), n]; fi; fi; od; S;
Showing 1-9 of 9 results.
Comments