A095778 Values of n for which A095777(n) is 9 (those terms which are expressible in decimal digits for bases 2 through 10, but not for base 11).
10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 352, 353
Offset: 1
Examples
a(5)=54 because 54 when expressed in successive bases starting at 2 will produce its first non-decimal digit at base 11. Like so: 110110, 2000, 312, 204, 130, 105, 66, 60, 54. In base 11, 54 is 4A.
Links
- François Marques, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
Crossrefs
Programs
-
Maple
S := []; for n from 1 to 1000 do; if 1>0 then; ct := 0; ok := true; b := 2; if (n>9) then; while ok=true do; L := convert(n, base, b); for e in L while ok=true do; if (e > 9) then ok:=false; fi; od; if ok=true then; ct := ct + 1; b := b + 1; fi; od; fi; if ct=9 then S := [op(S), n]; fi; fi; od; S; # or seq(`if`(numboccur(10, convert(n, base, 11))>0, n, NULL), n=0..1000); # François Marques, Oct 11 2020
-
Mathematica
Select[Range[400],Max[IntegerDigits[#,11]]>9&] (* Harvey P. Dale, Sep 30 2018 *)
-
PARI
isok(m) = #select(x->(x==10), digits(m, 11)) >= 1; \\ François Marques, Oct 11 2020
-
Python
from gmpy2 import digits def A095778(n): def f(x): l = (s:=digits(x,11)).find('a') if l >= 0: s = s[:l]+'9'*(len(s)-l) return n+int(s) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Dec 04 2024
Comments