A095792 a(n) = Z(n) - L(n), where Z=A072649 and L=A095791 are lengths of Zeckendorf and lazy Fibonacci representations in binary notation.
0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Keywords
Examples
Zeckendorf-binary of 11 is 10100; lazy-Fibonacci-binary of 11 is 1111. Thus Z(11)=5, L(11)=4 and a(11)=5-4=1.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
t1 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {_, 0, 0, _}]; (* maximal, lazy *) t2 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {_, 1, 1, _}]; (* minimal, Zeckendorf *) m = Map[Length, t2] - Take[Map[Length, t1], Length[t2]] (* A095792 *) (* Peter J. C. Moses, Mar 03 2015 *)
Formula
a(n)=0 if n is of the form F(k)-1 for k>=1 and a(n)=1 otherwise.