cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095792 a(n) = Z(n) - L(n), where Z=A072649 and L=A095791 are lengths of Zeckendorf and lazy Fibonacci representations in binary notation.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Clark Kimberling, Jun 05 2004

Keywords

Examples

			Zeckendorf-binary of 11 is 10100; lazy-Fibonacci-binary of 11 is 1111.
Thus Z(11)=5, L(11)=4 and a(11)=5-4=1.
		

Crossrefs

Programs

  • Mathematica
    t1 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {_, 0, 0, _}]; (* maximal, lazy *)
    t2 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {_, 1, 1, _}];  (* minimal, Zeckendorf *)
    m = Map[Length, t2] - Take[Map[Length, t1], Length[t2]] (* A095792 *)
    (* Peter J. C. Moses, Mar 03 2015 *)

Formula

a(n)=0 if n is of the form F(k)-1 for k>=1 and a(n)=1 otherwise.