cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095796 1 + (26*n+17+7*n^2)*n/2.

Original entry on oeis.org

1, 26, 98, 238, 467, 806, 1276, 1898, 2693, 3682, 4886, 6326, 8023, 9998, 12272, 14866, 17801, 21098, 24778, 28862, 33371, 38326, 43748, 49658, 56077, 63026, 70526, 78598, 87263, 96542, 106456
Offset: 0

Views

Author

Gary W. Adamson, Jun 06 2004

Keywords

Comments

Multiply the n-th power of the 4 X 4 matrix [1 0 0 0 / 1 1 0 0 / 2 3 1 0 / 6 12 7 1] by the column vector [1 1 1 1] from the right. Then a(n) is the last component of the vector that results, and A095794(n) the penultimate component.

Examples

			806 = a(5) since M65 * [1 1 1 1] = [1 6 56 806] where 56 = A095794(5).
		

Crossrefs

Cf. A095794.

Programs

  • Magma
    I:=[1, 26, 98, 238]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    LinearRecurrence[{4,-6, 4,-1},{1,26,98,238},40] (* Vincenzo Librandi, Jun 24 2012 *)
    Table[1+(26n+17+7n^2)n/2,{n,0,30}] (* or *) CoefficientList[Series[ (1+ 22x- 2x^3)/(-1+x)^4,{x,0,30}],x]

Formula

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
G.f. ( 1+22*x-2*x^3 ) / (x-1)^4 . - R. J. Mathar, Nov 05 2011