A095796 1 + (26*n+17+7*n^2)*n/2.
1, 26, 98, 238, 467, 806, 1276, 1898, 2693, 3682, 4886, 6326, 8023, 9998, 12272, 14866, 17801, 21098, 24778, 28862, 33371, 38326, 43748, 49658, 56077, 63026, 70526, 78598, 87263, 96542, 106456
Offset: 0
Examples
806 = a(5) since M65 * [1 1 1 1] = [1 6 56 806] where 56 = A095794(5).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A095794.
Programs
-
Magma
I:=[1, 26, 98, 238]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 24 2012
-
Mathematica
LinearRecurrence[{4,-6, 4,-1},{1,26,98,238},40] (* Vincenzo Librandi, Jun 24 2012 *) Table[1+(26n+17+7n^2)n/2,{n,0,30}] (* or *) CoefficientList[Series[ (1+ 22x- 2x^3)/(-1+x)^4,{x,0,30}],x]
Formula
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
G.f. ( 1+22*x-2*x^3 ) / (x-1)^4 . - R. J. Mathar, Nov 05 2011
Comments