cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095830 Number of binary trees of path length n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 14, 8, 12, 28, 21, 52, 52, 72, 92, 160, 212, 178, 446, 360, 628, 920, 918, 1568, 1784, 2676, 2960, 4724, 5360, 7280, 10876, 10936, 17484, 21732, 28469, 34224, 48648, 61232, 78196, 105680, 120904, 178848, 217404, 279312
Offset: 0

Views

Author

Gadiel Seroussi (seroussi(AT)hpl.hp.com), Jul 10 2004

Keywords

Comments

The cited preprint gives an asymptotic estimate for the number of trees as the path length goes to infinity, for t-ary trees, t >= 2. This sequence corresponds to t=2.

Examples

			a(1) = 2 because there are two binary trees of path length 1: a root with a left child and a root with a right child.
a(2) = 1 because there is just one binary tree of path length 2: a root with its two children.
		

Crossrefs

Cf. A106182.

Programs

  • Mathematica
    terms = 44; B[, ] = 0;
    Do[B[w_, z_] = Series[z B[w, w z]^2 + 1, {w, 0, terms-1}, {z, 0, terms-1}] // Normal, {terms-1}];
    CoefficientList[B[w, 1] - 1, w] (* Jean-François Alcover, Dec 03 2018 *)

Formula

G.f.: B(w, 1) - 1, where B(w, z) satisfies the functional equation B(w, z) = z B(w, wz)^2 + 1. B(w, z) is the g.f. for the number of binary trees of given path length and number of nodes (see Knuth Vol. 1 Sec. 2.3.4.5); B(1, z) is the g.f. for the Catalan numbers; for B(w, w) see A108643.