A108643 Number of binary rooted trees with n nodes and internal path length n.
1, 1, 0, 2, 0, 1, 4, 0, 4, 2, 8, 6, 8, 8, 8, 40, 4, 29, 40, 52, 56, 64, 116, 112, 200, 86, 296, 366, 360, 432, 652, 800, 840, 1470, 1116, 2048, 2356, 3052, 3524, 4220, 5648, 6964, 9660, 8688, 14128, 17024, 19432, 23972, 32784, 37873, 44912, 59672, 67560, 93684
Offset: 0
Keywords
References
- Knuth Vol. 1 Sec. 2.3.4.5, Problem 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A:= proc(n,k) option remember; if n=0 then 1 else convert(series(1+ x^k*A(n-1, k+1)^2, x,n+1), polynom) fi end: a:= n-> coeff(A(n,1), x,n): seq(a(n), n=0..60); # Alois P. Heinz, Aug 22 2008
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, 1+x^k*A[n-1, k+1]^2 + O[x]^(n+1) // Normal]; a[n_] := SeriesCoefficient[A[n, 1], {x, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 14 2017, after Alois P. Heinz *)
-
PARI
{a(n)=local(A=1+x*O(x^n)); for(j=0,n-1,A=1+x^(n-j)*A^2);polcoeff(A,n)} \\ Paul D. Hanna, Aug 20 2007
Formula
G.f. = B(w, w) where B(w, z) is defined in A095830.
G.f.: A(x) = 1 + x*(A_2)^2; A_2 = 1 + x^2*(A_3)^2; A_3 = 1 + x^3*(A_4)^2; ... A_n = 1 + x^n*(A_{n+1})^2 for n>=1 with A_1 = A(x). - Paul D. Hanna, Aug 20 2007
Extensions
More terms from Vladeta Jovovic, Jul 08 2005
Comments