cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A095830 Number of binary trees of path length n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 14, 8, 12, 28, 21, 52, 52, 72, 92, 160, 212, 178, 446, 360, 628, 920, 918, 1568, 1784, 2676, 2960, 4724, 5360, 7280, 10876, 10936, 17484, 21732, 28469, 34224, 48648, 61232, 78196, 105680, 120904, 178848, 217404, 279312
Offset: 0

Views

Author

Gadiel Seroussi (seroussi(AT)hpl.hp.com), Jul 10 2004

Keywords

Comments

The cited preprint gives an asymptotic estimate for the number of trees as the path length goes to infinity, for t-ary trees, t >= 2. This sequence corresponds to t=2.

Examples

			a(1) = 2 because there are two binary trees of path length 1: a root with a left child and a root with a right child.
a(2) = 1 because there is just one binary tree of path length 2: a root with its two children.
		

Crossrefs

Cf. A106182.

Programs

  • Mathematica
    terms = 44; B[, ] = 0;
    Do[B[w_, z_] = Series[z B[w, w z]^2 + 1, {w, 0, terms-1}, {z, 0, terms-1}] // Normal, {terms-1}];
    CoefficientList[B[w, 1] - 1, w] (* Jean-François Alcover, Dec 03 2018 *)

Formula

G.f.: B(w, 1) - 1, where B(w, z) satisfies the functional equation B(w, z) = z B(w, wz)^2 + 1. B(w, z) is the g.f. for the number of binary trees of given path length and number of nodes (see Knuth Vol. 1 Sec. 2.3.4.5); B(1, z) is the g.f. for the Catalan numbers; for B(w, w) see A108643.

A132330 G.f.: A(x) = 1 + x*(A_2)^3; A_2 = 1 + x^2*(A_3)^3; A_3 = 1 + x^3*(A_4)^3; ... A_n = 1 + x^n*(A_{n+1})^3 for n>=1 with A_1 = A(x).

Original entry on oeis.org

1, 1, 0, 3, 0, 3, 9, 1, 18, 9, 36, 45, 57, 90, 114, 351, 165, 558, 738, 1044, 1791, 1908, 3915, 4926, 8568, 8553, 17217, 26271, 30474, 50967, 68526, 113319, 144324, 219195, 299359, 473454, 665424, 860733, 1396350, 1895913, 2762550, 3790935, 5695974
Offset: 0

Views

Author

Paul D. Hanna, Aug 20 2007

Keywords

Crossrefs

Cf. A132331 (cube); A001764; A108643 (variant).

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(j=0,n-1,A=1+x^(n-j)*A^3);polcoeff(A,n)}

Formula

G.f. A(x) = B(x,x), where B(w,x) satisfies the functional equation B(w,x) = 1 + x*B(w,wx)^3. B(w,x) is the g.f. for the number of ternary trees of given path length and number of nodes; B(1,x) is the g.f. for A001764.

A228866 G.f.: A(x) = 1 + x*B(x), where B(x) = 1 + x^2*C(x)^2, C(x) = 1 + x^3*D(x)^3, D(x) = 1 + x^4*E(x)^4, ...

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 6, 0, 0, 6, 6, 24, 0, 15, 26, 48, 36, 140, 120, 60, 288, 279, 600, 660, 1476, 822, 2166, 2880, 5100, 7047, 6300, 14100, 21440, 30210, 30054, 62496, 72060, 123180, 174780, 253980, 319488, 497544, 730560, 976020, 1654856, 1997706, 3085932, 4160740, 6426480
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + x^3 + 2*x^6 + x^9 + 6*x^10 + 6*x^13 + 6*x^14 + 24*x^15 +...
where A(x) = 1 + x*B(x),
B(x) = 1 + x^2 + 2*x^5 + x^8 + 6*x^9 + 6*x^12 + 6*x^13 + 24*x^14 +...
B(x) = 1 + x^2*C(x)^2,
C(x) = 1 + x^3 + 3*x^7 + 3*x^11 + 12*x^12 + x^15 + 24*x^16 + 18*x^17 +...
C(x) = 1 + x^3*D(x)^3,
D(x) = 1 + x^4 + 4*x^9 + 6*x^14 + 20*x^15 + 4*x^19 + 60*x^20 + 40*x^21 +...
D(x) = 1 + x^4*E(x)^4,
E(x) = 1 + x^5 + 5*x^11 + 10*x^17 + 30*x^18 + 10*x^23 + 120*x^24 + 75*x^25 +...
E(x) = 1 + x^5*F(x)^5,
F(x) = 1 + x^6 + 6*x^13 + 15*x^20 + 42*x^21 + 20*x^27 + 210*x^28 + 126*x^29 +...
F(x) = 1 + x^6*G(x)^6,
G(x) = 1 + x^7 + 7*x^15 + 21*x^23 + 56*x^24 + 35*x^31 + 336*x^32 + 196*x^33 +...
G(x) = 1 + x^7*H(x)^7,
H(x) = 1 + x^8 + 8*x^17 + 28*x^26 + 72*x^27 + 56*x^35 + 504*x^36 + 288*x^37 +...
...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1);for(k=1,n,A = 1 + (x*A)^(n-k+1) +x*O(x^n));polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))

A302693 a(n) = [x^n] 1 + x*(1 + x^2*(1 + x^3*(1 + x^4*(1 + x^5*(1 + ...)^n)^n)^n)^n)^n.

Original entry on oeis.org

1, 1, 0, 3, 0, 10, 36, 35, 448, 450, 4600, 13167, 45408, 240006, 670124, 3863835, 13209088, 60533974, 268324056, 1089776654, 5328589520, 22065836226, 106289169448, 481033496803, 2231768294208, 10748702587800, 49858509230920, 245664498591891, 1175943617623264
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1 + x Fold[(x^(#2 + 1) #1 + 1)^n &, 0, Reverse[Range[n]]], {x, 0, n}], {n, 0, 28}]

A302751 Expansion of 1 + x*(1 + 2*x^2*(1 + 3*x^3*(1 + 4*x^4*(1 + ...)^4)^3)^2).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 12, 0, 0, 18, 144, 0, 0, 432, 576, 2880, 0, 4320, 9408, 23040, 21600, 109440, 172800, 110880, 662400, 832320, 2678400, 4060800, 10296000, 9412992, 32922000, 63676800, 135734400, 263556528, 281030400, 973036800, 1906704000, 4069224000, 5184984960
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 12 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^3 + 12*x^6 + 18*x^9 + 144*x^10 + 432*x^13 + 576*x^14 + 2880*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 38; CoefficientList[Series[1 + x Fold[((#2 + 1) x^(#2 + 1) #1 + 1)^#2 &, 0, Reverse[Range[nmax]]], {x, 0, nmax}], x]
Showing 1-5 of 5 results.