cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132330 G.f.: A(x) = 1 + x*(A_2)^3; A_2 = 1 + x^2*(A_3)^3; A_3 = 1 + x^3*(A_4)^3; ... A_n = 1 + x^n*(A_{n+1})^3 for n>=1 with A_1 = A(x).

Original entry on oeis.org

1, 1, 0, 3, 0, 3, 9, 1, 18, 9, 36, 45, 57, 90, 114, 351, 165, 558, 738, 1044, 1791, 1908, 3915, 4926, 8568, 8553, 17217, 26271, 30474, 50967, 68526, 113319, 144324, 219195, 299359, 473454, 665424, 860733, 1396350, 1895913, 2762550, 3790935, 5695974
Offset: 0

Views

Author

Paul D. Hanna, Aug 20 2007

Keywords

Crossrefs

Cf. A132331 (cube); A001764; A108643 (variant).

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(j=0,n-1,A=1+x^(n-j)*A^3);polcoeff(A,n)}

Formula

G.f. A(x) = B(x,x), where B(w,x) satisfies the functional equation B(w,x) = 1 + x*B(w,wx)^3. B(w,x) is the g.f. for the number of ternary trees of given path length and number of nodes; B(1,x) is the g.f. for A001764.

A171793 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and path length k; 0<=k<=n(n-1)/2.

Original entry on oeis.org

1, 1, 0, 3, 0, 0, 3, 9, 0, 0, 0, 1, 18, 9, 27, 0, 0, 0, 0, 0, 9, 45, 57, 54, 27, 81, 0, 0, 0, 0, 0, 0, 0, 36, 87, 270, 81, 297, 171, 162, 81, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 261, 567, 756, 936, 585, 972, 729, 891, 513, 486, 243, 729, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 774, 1080
Offset: 0

Views

Author

Paul D. Hanna, Jan 29 2010

Keywords

Examples

			G.f.: A(x,q) = 1 + x + (3*q)*x^2 + (3*q^2 + 9*q^3)*x^3 + (q^3 + 18*q^4 + 9*q^5 + 27*q^6)*x^4 +...
A(x,q)^3 = 1 + 3*x + (3 + 9*q)*x^2 + (1 + 18*q + 9*q^2 + 27*q^3)*x^3 +...
Triangle begins:
1;
1;
0,3;
0,0,3,9;
0,0,0,1,18,9,27;
0,0,0,0,0,9,45,57,54,27,81;
0,0,0,0,0,0,0,36,87,270,81,297,171,162,81,243;
0,0,0,0,0,0,0,0,0,84,261,567,756,936,585,972,729,891,513,486,243,729;
0,0,0,0,0,0,0,0,0,0,0,126,774,1080,2817,2682,4383,1998,4941,3294,3780,2241,4374,2187,2673,1539,1458,729,2187; ...
		

Crossrefs

Cf. A001764 (row sums), A132331 (column sums), A138157 (variant).

Programs

  • PARI
    {T(n,k)=local(A=1+x);for(i=1,n,A=1+x*subst(A,x,q*x+x*O(x^n))^3); polcoeff(polcoeff(A,n,x)+O(q^(n*(n-1)/2+1)),k,q)}

Formula

G.f. satisfies: A(x,q) = 1 + x*A(q*x,q)^3.
Row sums equal A001764, which enumerates ternary trees and has g.f.: G(x) = 1 + x*G(x)^3.
Column sums equal A132331(k), which is the number of ternary trees of path length k.

A275690 G.f. A(x) satisfies: 1 = ...(((((A(x) - x)^(1/3) - x^2)^(1/3) - x^3)^(1/3) - x^4)^(1/3) - x^5)^(1/3) -...- x^n)^(1/3) -..., an infinite series of nested cube roots.

Original entry on oeis.org

1, 1, 3, 9, 30, 99, 334, 1116, 3744, 12504, 41724, 138840, 461187, 1528554, 5057028, 16699293, 55051065, 181184337, 595400772, 1953715239, 6401926227, 20950064478, 68472011889, 223521012585, 728827015536, 2373846887673, 7723658267667, 25104640758607, 81519763177575, 264463605423009, 857192148657477, 2775964660002954, 8982278557410627, 29040795844301862, 93819208534071840, 302863860771034455, 976981070712962919, 3149327670664845204
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2016

Keywords

Crossrefs

Cf. A132331 (variant), A274965 (variant).

Programs

  • PARI
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^3 + x^(n+1-k)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
Showing 1-3 of 3 results.