A095846 Expansion of eta(q^2)eta(q^10)^3/(eta(q^5)eta(q)^3) in powers of q.
1, 3, 8, 19, 41, 84, 164, 307, 557, 983, 1692, 2852, 4718, 7672, 12288, 19411, 30274, 46671, 71180, 107479, 160792, 238476, 350828, 512196, 742441, 1068914, 1529120, 2174216, 3073670, 4321444, 6044072, 8411283, 11649936, 16062102, 22048604
Offset: 1
Keywords
Links
- Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
Programs
-
Mathematica
nmax=60; Rest[CoefficientList[Series[x*Product[(1+x^k) * (1-x^(5*k))^2 * (1+x^(5*k))^3 / (1-x^k)^2,{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Oct 13 2015 *)
-
PARI
a(n)=local(A); if(n<1,0,n--; A=x*O(x^n); polcoeff(eta(x^2+A)*eta(x^10+A)^3/(eta(x+A)^3*eta(x^5+A)),n))
Formula
G.f.: x*(Product_{k>0} (1-x^(2k))(1-x^(10k))^3/((1-x^k)^3(1-x^(5k)))).
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(11/4) * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Comments