cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095846 Expansion of eta(q^2)eta(q^10)^3/(eta(q^5)eta(q)^3) in powers of q.

Original entry on oeis.org

1, 3, 8, 19, 41, 84, 164, 307, 557, 983, 1692, 2852, 4718, 7672, 12288, 19411, 30274, 46671, 71180, 107479, 160792, 238476, 350828, 512196, 742441, 1068914, 1529120, 2174216, 3073670, 4321444, 6044072, 8411283, 11649936, 16062102, 22048604
Offset: 1

Views

Author

Michael Somos, Jun 08 2004

Keywords

Comments

G.f. A(x) satisfies 0=f(A(x),A(x^2)) where f(u,v)=-u^2+v+6uv+4v^2+20uv^2.
Euler transform of period 10 sequence [3,2,3,2,4,2,3,2,3,0,...].

Programs

  • Mathematica
    nmax=60; Rest[CoefficientList[Series[x*Product[(1+x^k) * (1-x^(5*k))^2 * (1+x^(5*k))^3 / (1-x^k)^2,{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    a(n)=local(A); if(n<1,0,n--; A=x*O(x^n); polcoeff(eta(x^2+A)*eta(x^10+A)^3/(eta(x+A)^3*eta(x^5+A)),n))

Formula

G.f.: x*(Product_{k>0} (1-x^(2k))(1-x^(10k))^3/((1-x^k)^3(1-x^(5k)))).
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(11/4) * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015