A095873 Triangle T(n,k) = (2*k-1)*(n+k-1)*(n-k+1) read by rows, 1<=k<=n.
1, 4, 9, 9, 24, 25, 16, 45, 60, 49, 25, 72, 105, 112, 81, 36, 105, 160, 189, 180, 121, 49, 144, 225, 280, 297, 264, 169, 64, 189, 300, 385, 432, 429, 364, 225, 81, 240, 385, 504, 585, 616, 585, 480, 289, 100, 297, 480, 637, 756, 825
Offset: 1
Examples
[1 0 0 / 1 3 0 / 1 3 5]^2 = [1 0 0 / 4 9 0 / 9 24 25]. Delete the zeros and read by rows: 1; 4, 9; 9, 24, 25; 16,45, 60, 49; 25,72,105,112, 81;
References
- Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966.
Programs
-
Maple
A095873 := proc(n,k) (2*k-1)*(n+k-1)*(n-k+1) ; end proc: seq(seq(A095873(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Oct 30 2011
-
Mathematica
Table[(2k-1)(n+k-1)(n-k+1),{n,10},{k,n}]//Flatten (* Harvey P. Dale, May 03 2018 *)
Formula
T(n,k) = (2*k-1)*A094728(n,k).
Sum_{k=1..n} T(n,k)= n*(n+1)*(3*n^2+n-1)/6 = A103220(n). - R. J. Mathar, Oct 30 2011
Extensions
Definition in closed form by R. J. Mathar, Oct 30 2011
Comments