A095913 Number of plasma partitions of 2n-1.
0, 0, 1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
Offset: 1
Keywords
Examples
A plasma partition is a partition of n into 1 distinct odd part and an even number of odd parts and at least 2 parts of 1, so looking like plasma. E.g. a(7) counts the plasma partitions of 13, has 11+1+1 = 9+1+1 = 7+1+1+1+1 = 5+1+1+1+1+1+1 = 5+3+3+1+1 = 3+1+1+1+1+1+1+1+1, so a(7)=6. Graphically, these are; .....*..........*........*......*.....*....* ***********.....*........*......*....***...* .....*......*********....*......*...*****..* ................*.....*******...*....***...* ................*........*....*****...*....* .........................*......*.........*** .........................*......*..........* ................................*..........* ................................*..........* ...........................................* ...........................................*
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
a(n)=A053253(n-3).
Programs
-
PARI
{a(n)=local(A); if(n<3, 0, n-=2; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */
Formula
G.f.: sum(i>=1, x^(i+2)/prod(j=1..i, 1-x^(2*j-1))) . - Michael Somos, Aug 18 2006
G.f.: x^2*(1 - G(0) )/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019