cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247304 Expected value of trace(O)^(2n), where O is a 5 X 5 orthogonal matrix randomly selected according to Haar measure.

Original entry on oeis.org

1, 3, 15, 105, 945, 10263, 127699, 1751685, 25807445, 401449271, 6519160851, 109656966853, 1899821492925, 33757439931675, 613135175204151, 11352879180474205, 213825919244349885, 4089023317563827335, 79269914519539177315, 1555788699527063688453
Offset: 1

Views

Author

Nathaniel Johnston, Sep 11 2014

Keywords

Comments

The corresponding sequences for 2 X 2, 3 X 3, and 4 X 4 matrices are A001700, A099251, and A246860.
This sequence is a bisection of A095922. - Nathaniel Johnston, Nov 03 2014

Crossrefs

Programs

  • Maple
    A247304 := proc (n) return (1/2)*integrate(integrate((1-cos(x))*(1-cos(y))*(cos(x)-cos(y))^2*(1+2*cos(x)+2*cos(y))^(2*n), y = 0 .. 2*Pi), x = 0 .. 2*Pi)/Pi^2 end proc; seq(A247304(n), n = 1 .. 20);

A138356 Moment sequence of t^2 coefficient in det(tI-A) for random matrix A in USp(4).

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 82, 268, 940, 3476, 13448, 53968, 223412, 949535, 4128594, 18310972, 82645012, 378851428, 1760998280, 8288679056, 39457907128, 189784872428, 921472827272, 4512940614960, 22279014978544, 110797225212112
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 17 2008

Keywords

Comments

Let the random variable X be the coefficient of t^2 in the characteristic polynomial det(tI-A) of a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic). Then a(n) = E[X^n].
Let L_p(T) be the L-polynomial (numerator of the zeta function) of a genus 2 curve C. Under a generalized Sato-Tate conjecture, for almost all C,
a(n) is the n-th moment of the coefficient of t^2 in L_p(t/sqrt(p)), as p varies.
See A095922 for central moments.

Examples

			a(3) = 4 because E[X^3] = 4 for X the t^2 coeff of det(tI-A) in USp(4).
a(3) = 1*2^3*(1*1-0^2) + 3*2^2*(0*0-1^2) + 3*2^1*(1*2-0^2) + 1*2^0*(0*0-2^2) = 8 - 12 + 12 - 4 = 4.
		

Crossrefs

Formula

a(n) = (1/2)Integral_{x=0..Pi,y=0..Pi}(4cos(x)cos(y)+2)^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n}binomial(n,i)2^{n-i}*(A126120(i)*A126120(i+2)-A126120(i+1)^2).

A247591 Dimension of invariants of 2n-th tensor power of 6-dimensional irreducible representation of A_3.

Original entry on oeis.org

1, 1, 3, 16, 126, 1296, 16071, 228514, 3607890, 61891050, 1135871490, 22049362440, 448790912004, 9512960347260, 208858963314735, 4728736078065810, 110006925920592810, 2621619942885055530, 63840054782606886630, 1585094577104979776880, 40054740803371374834780, 1028483346608802276173280
Offset: 0

Views

Author

Paul Zinn-Justin, Sep 20 2014

Keywords

Comments

The 6-dimensional representation is the usual representation of SO(6)=A_3.

Examples

			For 2n=6, there are 15 invariants corresponding to all ways of pairing the 6 indices with the metric tensor, plus one invariant which is the completely skew-symmetric 6-index tensor.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = (4*n*(2*n-1)*(5*n+7)*a[n-1] - 36*(n-1)*(2*n-3)*(2*n-1)*a[n-2]) / ((n+2)*(n+3)^2); Table[a[n], {n, 0, 21}]
  • PARI
    N=66; v=vector(N); v[1]=1; v[2]=1;
    for(n=2, N-1, my(t=n+1); v[t] = (-36*(n-1)*(2*n-3)*(2*n-1)*v[t-2] + 4*n*(2*n-1)*(5*n+7)*v[t-1]) / ((n+2)*(n+3)^2) );
    v \\ Joerg Arndt, Sep 20 2014

Formula

a(n) = (-36*(n-1)*(2*n-3)*(2*n-1)*a(n-2) + 4*n*(2*n-1)*(5*n+7)*a(n-1)) / ((n+2)*(n+3)^2).
a(n) = (9*(n+1)*A005802(n)-(n+5)*A005802(n+1))*binomial(2*n,n)/(2*(n+1)*(n+2)). - Mark van Hoeij, Nov 12 2023

A353173 Dimension of space of invariants of n-th tensor power of the 26-dimensional fundamental (or "standard") irreducible representation of F_4.

Original entry on oeis.org

1, 0, 1, 1, 5, 15, 70, 330, 1820, 10858, 70875, 497135, 3727955, 29658410, 248989676, 2194891440, 20231692430, 194286848280, 1937546532820, 20008993160460, 213436182918652, 2346406693816315, 26531060178217182, 307987244037724262, 3664579007885995952
Offset: 0

Views

Author

David A. Madore, Apr 28 2022

Keywords

Comments

It is known that a(n) satisfies a linear recurrence relation with polynomial coefficients. The limit of a(n+1)/a(n) is 26.

Examples

			a(1)=0 because there is no F_4-invariant linear form on the 26-dimensional representation; a(2)=1 because there is, up to scalars, precisely one invariant quadratic form.
		

Crossrefs

The analogous sequence for the (52-dimensional) adjoint representation of F_4 is: A179685.
A similar sequence for G_2 (for its 7-dimensional fundamental irreducible representation) is: A059710.
A similar sequence for B_2 (for its standard 5-dimensional irreducible representation) is: A095922.
For A_n the similar sequence (omitting some 0's) is given by the (n+1)-dimensional Catalan numbers, e.g., A005789 for A_2.

Programs

  • LiE
    p_tensor(n,[0,0,0,1],F4)|[0,0,0,0] # Returns the value of a(n).
Showing 1-4 of 4 results.