cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095974 Evaluate n^4 - 93n^3 + 3196n^2 - 48008n + 265483 for n >= 0, record the primes.

Original entry on oeis.org

265483, 220579, 181523, 147793, 118891, 94343, 73699, 56533, 42443, 31051, 22003, 14969, 9643, 5743, 3011, 1213, 139, -397, -557, -479, -277, -41, 163, 293, 331, 283, 179, 73, 43, 191, 643, 1549, 3083, 5443
Offset: 0

Views

Author

Hilko Koning (hilko(AT)hilko.net), Jul 16 2004

Keywords

Comments

A prime-generating quartic polynomial.

Crossrefs

A096372 List of primes produced by a certain "prime-generating" quartic polynomial.

Original entry on oeis.org

1688311, 1410743, 1168619, 958807, 778319, 624311, 494083, 385079, 294887, 221239, 162011, 115223, 79039, 51767, 31859, 17911, 8663, 2999, -53, -1321, -1489, -1097, -541, -73, 199, 311, 443, 919, 2207, 4919, 9811, 17783, 29879, 47287, 71339, 103511, 145423, 198839
Offset: 1

Views

Author

Hilko Koning (hilko(AT)hilko.net), Jul 19 2004

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> 6*n^4 - 558*n^3 + 19354*n^2 - 296370*n + 1688311:
    select(isprime@abs, [seq(f(n),n=0..100)]); # Robert Israel, Jan 16 2018
  • Mathematica
    Select[Table[6n^4-558n^3+19354n^2-296370n+1688311,{n,0,40}],PrimeQ] (* Harvey P. Dale, Dec 31 2018 *)

Formula

Evaluate 6n^4 - 558n^3 + 19354n^2 - 296370n + 1688311 for n >= 0, record the primes.

Extensions

Offset changed to 1 by Robert Israel, Jan 16 2018
Showing 1-2 of 2 results.