A095955 Function f(x) = phi(sigma(x)) is iterated with initial value n; a(n) is the length of the cycle into which the trajectory merges.
1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 3, 1, 1, 3, 1, 1, 3, 3, 1, 3, 3, 1, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 1, 2, 1, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Examples
Occurrences of cycle lengths if n <= 1000: {C1=110, C2=781, C3=36, C4=67, C5=0, C6=6, C7=0, ...}.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jud McCranie, Unknown cases < 725000000
- Jud McCranie, Details of various cycles
- Index to sequences related to decomposition of primes in quadratic fields
Crossrefs
Programs
-
Mathematica
g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Jul 14 2004 *)
-
PARI
f(x)=eulerphi(sigma(x)) a(n)=my(t=f(n),h=f(t),s); while(t!=h, t=f(t); h=f(f(h))); t=f(t); h=f(t); s=1; while(t!=h, s++; t=f(t); h=f(f(h))); s \\ Charles R Greathouse IV, Nov 22 2013
Comments