A095969 If p(k) is the k-th prime, then the n-th set of 2 consecutive cousin prime pairs starts at p(a(n)).
4, 6, 12, 25, 27, 29, 48, 63, 88, 93, 134, 147, 149, 151, 153, 181, 211, 224, 235, 247, 249, 285, 301, 389, 433, 483, 612, 642, 694, 742, 877, 975, 994, 1037, 1039, 1080, 1094, 1153, 1276, 1278, 1301, 1380, 1395, 1439, 1474, 1563, 1580, 1617, 1638, 1688
Offset: 1
Keywords
Examples
a(2)=6: p(6)=13 and p(7)=17, the first cousin prime pair, p(8)=19 and p(9)=23, the second cousin prime pair.
Programs
-
Magma
[n: n in [1..2000] | NthPrime(n+1)-NthPrime(n) eq 4 and NthPrime(n+3)-NthPrime(n+2) eq 4]; // Vincenzo Librandi, Jul 03 2015
-
Mathematica
n=0 Do[If[Prime[k + 1] - Prime[k]==4&&Prime[k + 3] - Prime[k + 2]==4, n = n + 1; Print[n, " ", k]], {k, 1, 1700}] (* Vincenzo Librandi, Jul 03 2015 *)