A095972 Number of quadratic nonresidues modulo n.
0, 0, 1, 2, 2, 2, 3, 5, 5, 4, 5, 8, 6, 6, 9, 12, 8, 10, 9, 14, 13, 10, 11, 18, 14, 12, 16, 20, 14, 18, 15, 25, 21, 16, 23, 28, 18, 18, 25, 31, 20, 26, 21, 32, 33, 22, 23, 40, 27, 28, 33, 38, 26, 32, 37, 44, 37, 28, 29, 48, 30, 30, 47, 52, 44, 42, 33, 50, 45, 46, 35, 60, 36, 36, 53
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Quadratic Nonresidue
Programs
-
Maple
A095972 := proc(n) local a,q; a := 0 ; for q from 0 to n-1 do if numtheory[quadres](q,n) = -1 then a := a+1 ; end if; end do; a ; end proc: # R. J. Mathar, Nov 05 2012
-
Mathematica
Table[Length[Complement[Range[n-1], Union[Mod[Range[n]^2, n]]]], {n, 100}] (* T. D. Noe, Nov 06 2012 *)
-
PARI
A095972(n)={local(v);v=vector(n,i,1);for(i=0,floor(n/2),v[i^2%n+1]=0);sum(i=1,n,v[i])} \\ Michael B. Porter, Apr 30 2010
-
PARI
a(n)=my(f=factor(n));n-prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ Charles R Greathouse IV, Jul 15 2011
-
Python
from math import prod from sympy import factorint def A095972(n): return n-prod((p**(e+1)//((p+1)*(q:=1+(p==2)))>>1)+q for p, e in factorint(n).items()) # Chai Wah Wu, Oct 07 2024
Formula
a(n) = n - A000224(n). - R. J. Mathar, Nov 05 2012
Extensions
Edited by Don Reble, May 07 2006
Comments