cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095972 Number of quadratic nonresidues modulo n.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 3, 5, 5, 4, 5, 8, 6, 6, 9, 12, 8, 10, 9, 14, 13, 10, 11, 18, 14, 12, 16, 20, 14, 18, 15, 25, 21, 16, 23, 28, 18, 18, 25, 31, 20, 26, 21, 32, 33, 22, 23, 40, 27, 28, 33, 38, 26, 32, 37, 44, 37, 28, 29, 48, 30, 30, 47, 52, 44, 42, 33, 50, 45, 46, 35, 60, 36, 36, 53
Offset: 1

Views

Author

Cino Hilliard, Jul 21 2004

Keywords

Comments

A218578(n) is the number of times n occurs in this sequence. - Dmitri Kamenetsky, Nov 03 2012

Crossrefs

Programs

  • Maple
    A095972 := proc(n)
        local a,q;
        a := 0 ;
        for q from 0 to n-1 do
            if numtheory[quadres](q,n) = -1 then
                a := a+1 ;
            end if;
        end do;
        a ;
    end proc: # R. J. Mathar, Nov 05 2012
  • Mathematica
    Table[Length[Complement[Range[n-1], Union[Mod[Range[n]^2, n]]]], {n, 100}] (* T. D. Noe, Nov 06 2012 *)
  • PARI
    A095972(n)={local(v);v=vector(n,i,1);for(i=0,floor(n/2),v[i^2%n+1]=0);sum(i=1,n,v[i])} \\ Michael B. Porter, Apr 30 2010
    
  • PARI
    a(n)=my(f=factor(n));n-prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Python
    from math import prod
    from sympy import factorint
    def A095972(n): return n-prod((p**(e+1)//((p+1)*(q:=1+(p==2)))>>1)+q for p, e in factorint(n).items()) # Chai Wah Wu, Oct 07 2024

Formula

a(n) = n - A000224(n). - R. J. Mathar, Nov 05 2012

Extensions

Edited by Don Reble, May 07 2006