A095991 Numbers m such that f(k) * 2^m - 1 is prime, where f(j) = A070826(j) and k is the number of decimal digits of 2^m.
2, 3, 4, 6, 14, 17, 18, 23, 33, 43, 45, 53, 60, 70, 114, 141, 162, 178, 387, 657, 787, 951, 1517, 1882, 1999, 2423, 2722, 3635, 3636, 3893, 5021, 5631, 7580, 7674, 8318, 9479, 19761
Offset: 1
Examples
a(5)=14 because 1155 * 2^14 - 1 = 18923519, a prime.
Programs
-
Mathematica
Do[ If[ PrimeQ[ Product[ Prime[i], {i, Floor[ n / Log[2, 10] + 1]}] * 2^(n - 1) - 1], Print[n]], {n, 7300}] (* Robert G. Wilson v, Jul 23 2004 *)
Extensions
Edited by Robert G. Wilson v, Jul 23 2004
a(33)-a(37) from Michael S. Branicky, Aug 03 2024
Comments