A096004 Number of convex triangular polyominoes containing n cells.
1, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 5, 2, 3, 3, 4, 2, 4, 4, 6, 3, 3, 4, 5, 2, 5, 5, 7, 3, 4, 5, 6, 3, 5, 5, 8, 3, 4, 5, 6, 4, 7, 7, 9, 4, 5, 5, 7, 3, 7, 8, 9, 3, 5, 7, 8, 4, 8, 8, 11, 4, 5, 7, 8, 4, 9, 9, 11, 5, 5, 8, 9, 4, 9, 9, 13, 5, 7, 9, 8, 5, 8, 9, 12
Offset: 1
Examples
a(8)=3 because there are 3 ways to compose a convex polygon of 8 equilateral triangles with side 1: . *---*---*---*---* / \ / \ / \ / \ / *---*---*---*---* *---*---* / \ / \ / *---*---* / \ / \ / *---*---* *---* / \ / \ *---*---* / \ / \ / \ *---*---*---*
Links
- Rainer Rosenthal, Table of n, a(n) for n = 1..5200
- Peter Kagey, Examples for a(1)-a(30).
- Walter Trump, Number of Convex Polygons of a Given Perimeter or Area on the Triangular Lattice, 2025.
Programs
-
Maple
a:=proc(n) local x,p,d,c,b; x:=0; for p from 0 to ceil((n+1)/2) do; for d from 0 to p do; for c from 0 to min(d,p-d) do; for b from 0 to min(c,p-c-d) do; if p^2-b^2-c^2-d^2=n then x:=x+1 fi; od; od; od; od; x; end; # corrected by Rainer Rosenthal, Sep 20 2017
Formula
a(n) >= sqrt(n)/3. - Baohua Tian, Apr 21 2020
Extensions
a(83) and a(84) corrected by Rainer Rosenthal, Sep 20 2017
Comments