A096032 Take pairs (a, b), sorted on a, such that T(a)+T(b)=concatenation of a and b, where T(k) is the k-th triangular number A000217(k). Sequence gives values of b.
1, 415, 1545, 1726, 2196, 910, 3676, 3846, 910, 5226, 415, 6970, 7171, 8526, 9231, 9300, 9756, 9850, 9880, 44835, 9880, 9850, 9756, 9300, 9231, 52830, 8526, 7171, 6970, 5226, 3846, 3676, 2196, 1726, 1545, 84906, 89386, 99580, 99580, 89386, 84906
Offset: 1
Examples
1726 of the sequence forms a pair with 150 and we indeed have T(150)+T(1726)=11325+1490401=1501726.
References
- J. S. Madachy, Madachy's Mathematical Recreations, pp. 166 Dover NY 1979.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..294
Programs
-
Mathematica
f[n_] := Block[{k = n + 1, t1 = n(n + 1)/2, td = IntegerDigits[n]}, While[k < 15*n && t1 + k(k + 1)/2 != FromDigits[ Join[ td, IntegerDigits[k]]], k++ ]; If[k != 15*n, k, 0]]; Do[ k = f[n]; If[k != 0, Print[n, " & ", k]], {n, 10^6}] (* Robert G. Wilson v, Jun 21 2004 *)
Extensions
Two more terms from Robert G. Wilson v, Jun 21 2004
Terms from a(19) onwards from David Wasserman, May 15 2007
Comments