cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096034 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^3-M)/2, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 4, 2, 13, 12, 3, 40, 52, 24, 4, 121, 200, 130, 40, 5, 364, 726, 600, 260, 60, 6, 1093, 2548, 2541, 1400, 455, 84, 7, 3280, 8744, 10192, 6776, 2800, 728, 112, 8, 9841, 29520, 39348, 30576, 15246, 5040, 1092, 144, 9, 29524, 98410, 147600, 131160, 76440
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle begins:
1
4 2
13 12 3
40 52 24 4
121 200 130 40 5
364 726 600 260 60 6
		

Crossrefs

Cf. A007318. First column gives A003462. Row sums give A006516.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^3-M)/2 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
  • Mathematica
    max = 10; M = Table[If[k > n, 0, Binomial[n, k]], {n, 0, max}, {k, 0, max} ];
    T = (M.M.M - M)/2;
    Table[T[[n + 1]][[1 ;; n]], {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)

Extensions

Edited with more terms by Alois P. Heinz, Oct 07 2009