cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A111578 Triangle T(n, m) = T(n-1, m-1) + (4m-3)*T(n-1, m) read by rows 1<=m<=n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 31, 15, 1, 1, 156, 166, 28, 1, 1, 781, 1650, 530, 45, 1, 1, 3906, 15631, 8540, 1295, 66, 1, 1, 19531, 144585, 126651, 30555, 2681, 91, 1, 1, 97656, 1320796, 1791048, 646086, 86856, 4956, 120, 1, 1, 488281, 11984820, 24604420, 12774510
Offset: 1

Views

Author

Gary W. Adamson, Aug 07 2005

Keywords

Comments

From Peter Bala, Jan 27 2015: (Start)
Working with an offset of 0, this is the exponential Riordan array [exp(z), (exp(4*z) - 1)/4].
This is the triangle of connection constants between the polynomial basis sequences {x^n}n>=0 and { n!*4^n * binomial((x - 1)/4,n) }n>=0. An example is given below.
Call this array M and let P denote Pascal's triangle A007318 then P^2 * M = A225469; P^(-1) * M is a shifted version of A075499.
This triangle is the particular case a = 4, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)

Examples

			The triangle starts in row n=1 as:
  1;
  1,1;
  1,6,1;
  1,31,15,1;
  1,156,166,28,1;
Connection constants: Row 4: [1, 31, 15, 1] so
x^3 = 1 + 31*(x - 1) + 15*(x - 1)*(x - 5) + (x - 1)*(x - 5)*(x - 9). - _Peter Bala_, Jan 27 2015
		

Crossrefs

Cf. A111577, A008277, A039755, A016234 (3rd column).

Programs

  • Mathematica
    T[n_, k_] := 1/(4^(k-1)*(k-1)!) * Sum[ (-1)^(k-j-1) * (4*j+1)^(n-1) * Binomial[k-1, j], {j, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Peter Bala *)
  • Python
    def A096038(n,m):
        if n < 1 or m < 1 or m > n:
            return 0
        elif n <=2:
            return 1
        else:
            return A096038(n-1,m-1)+(4*m-3)*A096038(n-1,m)
    print( [A096038(n,m) for n in range(20) for m in range(1,n+1)] )
    # R. J. Mathar, Oct 11 2009

Formula

From Peter Bala, Jan 27 2015: (Start)
The following formulas assume an offset of 0.
T(n,k) = 1/(4^k*k!)*sum {j = 0..k} (-1)^(k-j)*binomial(k,j)*(4*j + 1)^n.
T(n,k) = sum {i = 0..n-1} 4^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).
E.g.f.: exp(z)*exp(x/4*(exp(4*z) - 1)) = 1 + (1 + x)*z + (1 + 6*x + x^2)*z^2/2! + ....
O.g.f. for n-th diagonal: exp(-x/4)*sum {k >= 0} (4*k + 1)^(k + n - 1)*((x/4*exp(-x))^k)/k!.
O.g.f. column k: 1/( (1 - x)*(1 - 5*x)*...*(1 - (4*k + 1)*x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Oct 11 2009

A094930 Triangle T(n,m) read by rows, defined by squaring a matrix with row entries 2+3*(m-1).

Original entry on oeis.org

4, 14, 25, 30, 65, 64, 52, 120, 152, 121, 80, 190, 264, 275, 196, 114, 275, 400, 462, 434, 289, 154, 375, 560, 682, 714, 629, 400, 200, 490, 744, 935, 1036, 1020, 860, 529, 252, 620, 952, 1221, 1400, 1462, 1380, 1127, 676, 310, 765, 1184, 1540, 1806, 1955, 1960
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Comments

Matrix square of the matrix B(n,m) = 2+3*(m-1), B containing the first terms of A016789
in its row n, n>0, 1<=m<=n.

Examples

			The matrix B starts as
  2 ;
  2,5 ;
  2,5,8 ;
  2,5,8,11 ;
  2,5,8,11,14 ;
and interpreting this as a lower triangular matrix, its square T = B^2 starts
  4;
  14,25;
  30,65,64;
  52,120,152,121;
		

Crossrefs

Programs

  • Maple
    A094930 := proc(n,m) (3*m-1)*(3*m+3*n-2)*(n+1-m)/2 ; end: seq(seq(A094930(n,m),m=1..n),n=1..20) ; # R. J. Mathar, Oct 09 2009

Formula

T(n,m) = sum_{k=m..n} B(n,k)*B(k,m) = (3*m-1)*(3*m+3*n-2)*(n+1-m)/2.
Row sums: sum_{m=1..n} T(n,m) = A024212(n).
G.f. as triangle: x*y*(4+2*x+13*x*y-16*x^2*y+x^2*y^2-4*x^3*y^2)/((1-x)*(1-x*y))^3. - Robert Israel, May 06 2019

Extensions

Edited and extended by R. J. Mathar, Oct 09 2009

A096037 Triangle T(n,m) = (3*n+3*m-2)*(n+1-m)/2 read by rows.

Original entry on oeis.org

2, 7, 5, 15, 13, 8, 26, 24, 19, 11, 40, 38, 33, 25, 14, 57, 55, 50, 42, 31, 17, 77, 75, 70, 62, 51, 37, 20, 100, 98, 93, 85, 74, 60, 43, 23, 126, 124, 119, 111, 100, 86, 69, 49, 26, 155, 153, 148, 140, 129, 115, 98, 78, 55, 29, 187, 185, 180, 172, 161, 147, 130, 110, 87, 61, 32
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			The triangle starts in row n=1 as
2;
7,5;
15,13,8;
26,24,19,11;
		

Crossrefs

Programs

  • Python
    def A096037(n,m):
        return (3*n+3*m-2)*(n+1-m)//2
    print( [A096037(n,m) for n in range(20) for m in range(1,n+1)] )
    # R. J. Mathar, Oct 11 2009

Formula

T(n,m) = (3*n+3*m-2)*(n+1-m)/2 .
T(n,m) = A094930(n,m)/(3*m-1).
T(n,1) = A005449(n).
T(n,n) = A016768(n-1).
Row sums: sum_{m=1..n} T(n,m) = n^2*(n+1) = A011379(n).

Extensions

Edited and extended, A-numbers corrected by R. J. Mathar, Oct 11 2009
Showing 1-3 of 3 results.