cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A096044 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^10-M)/9, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 11, 2, 111, 33, 3, 1111, 444, 66, 4, 11111, 5555, 1110, 110, 5, 111111, 66666, 16665, 2220, 165, 6, 1111111, 777777, 233331, 38885, 3885, 231, 7, 11111111, 8888888, 3111108, 622216, 77770, 6216, 308, 8, 111111111, 99999999, 39999996, 9333324, 1399986, 139986, 9324, 396, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle T(n,k) begins:
       1;
      11,     2;
     111,    33,     3;
    1111,   444,    66,    4;
   11111,  5555,  1110,  110,   5;
  111111, 66666, 16665, 2220, 165, 6;
  ...
		

Crossrefs

Cf. A007318. First column gives A000042. Row sums give A016135.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^10-M)/9 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11);  # Alois P. Heinz, Oct 07 2009
  • Mathematica
    P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 10] - M)/9]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

Extensions

Edited and more terms from Alois P. Heinz, Oct 07 2009
Showing 1-1 of 1 results.