A096103 Table read by rows: row n contains the quadratic residues modulo n which are coprime to n.
1, 1, 1, 1, 4, 1, 1, 2, 4, 1, 1, 4, 7, 1, 9, 1, 3, 4, 5, 9, 1, 1, 3, 4, 9, 10, 12, 1, 9, 11, 1, 4, 1, 9, 1, 2, 4, 8, 9, 13, 15, 16, 1, 7, 13, 1, 4, 5, 6, 7, 9, 11, 16, 17, 1, 9, 1, 4, 16, 1, 3, 5, 9, 15, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 1, 1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 1, 3, 9, 17, 23, 25, 1, 4
Offset: 2
Examples
1; 1; 1; 1,4; 1; 1, 2, 4; 1; 1, 4, 7; 1, 9; 1, 3, 4, 5, 9; 1; 1, 3, 4, 9, 10, 12; 1, 9, 11; 1, 4;
Links
- Eric Weisstein's World of Mathematics, Quadratic Residue
Programs
-
Mathematica
Table[Union[Mod[Select[Range[n], CoprimeQ[#, n] &]^2, n]], {n, 2, 20}] // Grid (* Geoffrey Critzer, Jan 02 2015 *)
-
PARI
maybesqgcd1(n) = { for(x=2,n, b=floor(x/2); a=vector(b+1); for(y=1,b, z=y^2%x; if(z<>0, a[y]=z; ) ); s=vecsort(a); c=1; for(j=2,b+1, if(s[j]<>s[j-1], c++; if(gcd(x,s[j])==1,print1(s[j]",")) ) ); ) }
Extensions
Edited by Don Reble, Apr 16 2007
Comments